[30]

No. of Printed Pages: 3 SARDAR PATEL UNIVERSITY

M.Sc. (Electronics and Communication) (Sem – I) (NC) Examination - 2015

24/04/2015, Friday

Sc

Time: 10:30 am To 1:30 pm

Subject: Signal & System

Subject Code: PS01CELC03

Note: 1. State and assume the necessary data, wherever required. 2. Figures to the right indicate full marks.

Q.1		Choose the correct answer.	[08]
	1)	Consider an analog signal $x(t) = \sin 480 \pi t + 3 \sin 720 \pi t$. what is the	
		Nyquist sampling rate for this signal?	
		(a) 720 Hz (b) 480 Hz (c) 360 Hz (d) 240 Hz	
	2)	is process in which the analog signal is converted into a	
		corresponding sequence of regularly spaced samples.	
		(a) Quantization (b) Sampling (c) Encoding (d) A-D Conversion	
	3)	What is the fundamental period of the periodic signal $x(n) = cos(0.002\pi n)$?	
	<i>.</i>	(a) 1000 (b) 100 (c) 0.001 (d) 0.01	
	4)	System have a finite memory.	
		(a) Static (b) Dynamic (c) Both (d) None of above	
	5)	$Z - transform of \delta(n)$ is	
		(a) Z^{-3} (b) Z^{3} (c) 1 (d) 0	
	6)	The z – transform of $u(n)$ is	
	0)		
		(a) 1 (b) $\frac{1}{1-z^{-1}}$ (c) $\frac{z^{-1}}{1-z^{-1}}$ (d) $\frac{az^{-1}}{1-az^{-1}}$	
	7)	What is the condition for signal $x(t)$ to be called time limited signal?	
	.,	(a) $x(t) = 0 t > \tau$ (b) $x(t) \neq 0 t > \tau$ (c) $x(t) = 0 t < \tau$ (d) $x(t) \neq 0 t > \tau$	
	8)		
	<i>v</i>)	(a) $e^{j2\pi/N}$ (b) $e^{-j2\pi/N}$ (c) $e^{-j2\pi kn/N}$ (d) $e^{j2\pi kn/N}$	
		(a) e^{-N} (b) e^{-N} (c) e^{-N} (d) e^{-N}	
Q.2		Answer in short [ANY SEVEN]	[14]

- 1) Explain periodic signal and a-periodic signal.
- 2) Define the following discrete time signal with diagram.(i) Unit sample signal (ii) unit impulse signal

3) A Discrete time signal x(n) is defined as

 $x(n) = \begin{cases} 1+n/3 & -3 \le n \le -1 \\ 1 & 0 \le n \le 3 \\ 0 & elsewhere \end{cases}$ Determine its value and sketch the signal x(n).

- 4) Determine the z transform and ROC of x(n) = (1+n)u(n).
- 5) Enlist the different properties of z transform.
- 6) Write the synthesis and analysis equations for a continuous time periodic signal
- 7) Write the formulas for finding DFT and IDFT for N-point discrete time sequence.
- 8) Write the twiddle factor matrix for 4– point DFT.
- 9) Discuss linearity and symmetry properties of DFT.
- Q3 A) Enlist the different discrete time system and explain each in detail. [06] B) If the discrete time sampled signal is given by $x(n) = 3\cos\left(\frac{\pi n}{2}\right)$ with Fs = 300 [06]

Hz, What is the continuous time signal obtain using ideal interpolation?

<u>OR</u>

- B) State the sampling theorem and explain the sampling of an analog signal. [06]
- Q4 A) What is convolution? Determine the convolution of the discrete time signals $x(n) = \{1, 2, 0, 1, 2\}$ and $h(n) = \{1, -2, -3, 4\}$ using graphical method. [06]
 - B) A discrete time signal $x(n) = \{1, -1, 2, 5, 1\}$ sketch the following signal (i) x(n) (ii) x(4-n) (iii) x(n+1) (iv) x(n-1) (v) x(n+2)

<u>OR</u>

B) Determine the z – transform and ROC of the following.

a. $x(n) = a^n u(n)$ b. $x(n) = a^n u(-n-1)$ c. $x(n) = \left\{3, 0, 0, 0, 0, 0, \frac{6}{2}, 1, -4\right\}$ [06]

[06]

Q5 A) Determine the z – transform and ROC of the following.

1)
$$x(n) = a^n (\cos \omega_0 n) u(n)$$
 2) $x(n) = \left(\frac{1}{2}\right)^n u(n) + \left(\frac{1}{3}\right)^n u(n)$ [06]

[06]

B) Determine the inverse Z transform using power series expansion method / long division method

$$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$$
 when (a) ROC : $|z| > 1$ (b) ROC : $|z| < 0.5$

<u>OR</u>

- B) Derive the power density spectrum for periodic discrete time signal. [06]
- Q6 A) Compute the DFT of the 4 point sequence [06] $x(n) = \{1, 2, 3, 4\}$ Also plot magnitude and phase spectrum of the DFT. B) Write the circular shift property of DFT and obtain the circular convolution of the sequences $x_1(n) = \{2, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3, 4\}$ [06]

<u>OR</u>

B) Find all the values of twiddle factor matrix for 8 – point DFT. [06]
