SARDAR PATEL UNIVERSITY BSc. (I SEM.) (CBCS) EXAMINATION Tuesday, 27th November 2012 2.30 pm - 4.30 pm US01CMTH02 : Mathematics (Calculus and Differential Equations)

Total Marks: 70

Note: Figures to the right indicate full marks.

Q.1 Answer the following questions by selecting the most appropriate [10] option. Write down the option in your answer book.

1

(1) If
$$y = 7^{5x}$$
 then $y_n =$ ______.
(a) $5^n 7^{5x}$ (b) $7^n (\log 5)^n 7^{5x}$
(c) $7^n \cdot 7^{5x}$ (d) $5^n (\log 7)^n \cdot 7^{5x}$
(2) If $y = e^x$ then $y_{16} =$ ______.
(a) 0 (b) e^x
(b) e^x
(c) 1 (c) 1 (c) e^x
(c) 1 (c) $3^n \cos(3x + \frac{n\pi}{2})$ (c) $3^n \cos(3x + \frac{\pi}{2})$
(c) $3^n \sin(3x + \frac{n\pi}{2})$ (d) $3^n \sin(3x + \frac{\pi}{2})$
(e) $3^n \sin(3x + \frac{n\pi}{2})$ (f) $3^n \sin(3x + \frac{\pi}{2})$
(f) $\sqrt{1 + (\frac{dy}{dx})^2} =$ ______.
(g) ρ (g) $\frac{ds}{dx}$ (g) $\frac{ds}{dy}$
(g) For a polar curve, $\rho =$ _____.
(g) $\frac{(r^2 + r_1^2)^{\frac{3}{2}}}{r^2 + 2r_1^2 - rr_2}$ (g) $\frac{(r^2 + r_2^2)^{\frac{3}{2}}}{r^2 + 2r_1^2 - rr_2}$
(h) $\frac{(r^2 + r_2^2)^{\frac{3}{2}}}{r_1^2 - rr_2}$
(c) $\frac{(1 + r_1^2)^{\frac{3}{2}}}{r_2}$ (d) $\frac{(1 + r_2^2)^{\frac{3}{2}}}{r_1}$
(e) $\frac{\partial}{\partial x}(\frac{\partial z}{\partial y}) =$ ______.
(f) $\frac{\partial}{\partial y}(\frac{\partial z}{\partial x})$ (f) $\frac{\partial}{\partial x}(\frac{\partial^2 z}{\partial x \partial y})$

For a function y of x implicitly described by f(x, y) = c, $\frac{dx}{dy} =$ _____ (7) (a) $\frac{fx}{fy}$ (b) $\frac{fy}{fx}$ (d) $-\frac{fy}{fx}$ (c) $-\frac{fx}{fy}$ In usual notations, $\frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} =$ ______. (8) (b) $\frac{dz}{dt}$ (a) $\frac{dz}{dx}$ (c) $\frac{dz}{dv}$ (d) $\frac{dy}{dx}$ (9) The notation p=____ (b) $\frac{\partial x}{\partial y}$ (a) $\frac{\partial y}{\partial x}$ (d) $\frac{dx}{dy}$ (c) $\frac{dy}{dx}$ (10) The general solution of the differential equation $y = px + \frac{5}{n}$ is _____. (b) $y = cx + \frac{5}{c}$ (a) y = x + 5(d) $y = cp + \frac{5}{2}$ (c) $cx + \frac{5}{2} = 0$ Q.2 Write down any answer of Any Ten questions in short. (1) If $y=e^{mx}$, then prove that $y_n = m^n e^{mx}$. (2) If y=sin(ax+b) then find y_n . (3) Find ϕ for the curve r=a(1+cos θ). (4) Find ρ for r=a θ . Find $\frac{ds}{dx}$ for $y = a \cosh + \frac{x}{a}$ (5) (6) Find the point of intersection of $r=a(1+\cos\theta)$ and $r=-a\cos\theta$. (7) State theorem on total differential. (8) Define: Homogeneous function State Euler's theorem for function of two variables. (9) (10) Examine whether $(x^2 - 2xy - y^2)dx - (x + y)^2 dy = 0$ is exact or not. (11)**Define: Exact Differential Equation** (12)Solve: $\sin px \cos y = \cos px \sin y + p$ Q.3 (a) State and prove Leibnitz's theorem.

[20]

[05] [05]

(b) For
$$y = \log(ax+b)$$
, prove that $y_n = \frac{(-1)^{n-1} (n-1)!a!}{(ax+b)^n}$
OR

Q.3

(a) In usual notations prove that, $\tan \theta = \frac{r}{\frac{dr}{d\theta}}$.

[05]

[05]

(b) If
$$x = \cos(\frac{1}{m}\log y)$$
 then find $y_n(0)$.

- Q.4
 - (a) Find the length of arc of the parabola $y^2=4ax$ (a>0) measured from the [05] vertex to one extremity of its latus rectum.
 - (b) Find the intrinsic equation of the cardioid $r=a(1+\cos\theta)$. Hence prove [05] that $s^2+9\rho^2=16a^2$, where ρ is the radius of curvature at any point of the curve.
 - OR
- Q.4 (a) Show that the radius of curvature at any point of the curve [05] $x = ae^{\theta}(\cos\theta - \sin\theta), y = ae^{\theta}(\sin\theta + \cos\theta)$ is twice the perpendicular distance of the tangent at the point from the origin.
 - (b) Show that the intrinsic equation of the curve $y^3 = ax^2$ is 27s=8a(sec³ ψ -1). [05]

Q.5

(a) State and prove Euler's theorem for homogeneous function of three [05] variables.

(b) If
$$z = f(x, y), x = r \cos \theta, y = \sin \theta$$
, then [05]
prove that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$

OR

Q.5

(a) Verify Euler's theorem for
$$z = x^n \log\left(\frac{y}{x}\right)$$
 [05]
and find $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2}$

(b) If
$$z = xy f(\frac{y}{x})$$
 and z is constant, then show that $\frac{f'\left(\frac{y}{x}\right)}{f\left(\frac{y}{x}\right)} = \frac{x\left[y + x\frac{dy}{dx}\right]}{y\left[y - x\frac{dy}{dx}\right]}$ [05]

Q.6 Prove that the necessary and sufficient condition for the differential [10] equation Mdx+Ndy = 0 to be exact is that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

Q.6 Solve:
$$(p+y+x)(xp+x+y)(p+2x) = 0$$
 [10]
