[31]	No. of printed pages : 3
	SARDAR PATEL UNIVERSITY
	BSc (V Sem.) Examination
	2013 Monday, 18 th November
	10.30 am - 1.30 pm
	US05CMTH03 - Metric Spaces
Nota	Figures to the right indicate full marks
1.40	Figures to the right indicate full marks.
Q.1	Answer the following by selecting correct choice from the given [10] options.
(1)	If sequence $\{S_n\}_{n=1}^{\infty}$ is a sequence ℓ^2 in then
	(a) $\sum_{n=1}^{\infty} S_n = \infty$ (b) $\sum_{n=1}^{\infty} S_n \le \infty$ (c) $\sum_{n=1}^{\infty} S_n < \infty$ (d) none
(2)	The set of all cluster points of a set (1, 2) is (a) ϕ (b) [1, 2] (c) (1, 2) (d) R
(3)	The convergent sequence in a metric space M can not converge
	to (a) two limit points (b) two distinct limit points
·	(c) unique limit point (d) none of these
(4)	subset of R _d is always open.
(5)	(a) only some (b) only one (c) no (d) every
(5)	In usual notation \overline{Q} =
(0)	(a) R (b) ϕ (c) Q (d) Q'
(6)	Any subset of metric space is always closed. (a) finite & infinite (b) infinite (c) finite (d) none
(7)	metric space is complete.
	(a) R_d (b) R^2 (c) ℓ^{∞} (d) none of above
(8)	Metric space is compact.
(9)	(a) [1, 3] (b) [2, 4) (c) (0, 5] (d) (3, 6) image of compact metric space is compact.
(3)	(a) Any (b) Bounded (c) Continuous (d) None
(10)	Continuous function on a compact metric space is
	(a) unbounded (b) bounded
	(c) discontinuous (d) none
Q.2	Answer the following in short. (Attempt Any Ten) [20]
(1)	Define: Open Ball.
(2)	For M= [0, 1] with usual metric, find open ball of radius $\frac{1}{2}$ about $\frac{1}{4}$.
	Define Cauchy Sequence in a metric space.
(3) (4)	In metric space $\langle M, \rho \rangle$, prove that M is open set.
	Prove that any singleton set in R_d is open.
(5) (6)	In usual notations prove that $\mathbf{E} \subset \mathbf{\overline{E}}$.
(7)	State Heine Borel property.
(8)	If A = (5, 7) and ρ is absolute vale metric then find diam. (A).
	1

- (9) Define: Connected Set.
- (10) Show that the range of a continuous function on a compact metric space is bounded.
- (11) Define: Uniform Continuous function.
- (12) If the real valued function f is continuous on [a, b] then prove that f is uniformly continuous.

Q.3 Let $\langle M,d \rangle$ be a metric space and let $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ then prove [10]

that d_1 is a metric on M.

OR

Q.3 Prove that convergent sequence of points in a metric space $\langle M, \rho \rangle$ is [10] Cauchy. Is the converse true? Justify.

Q;4

- (a) If E is a subset of a metric space M, then prove that E is closed [05] in M.
- (b) If F_1 and F_2 are closed subset of metric space M, then prove that [05] $F_1 \bigcup F_2$ is closed in M.

OR

Q.4

- (a) Show that every open subset G of R' can be written as G-U In where [05] I₁, I₂, ... are finite or countable number of open intervals which are mutually disjoint.
- (b) Let $\langle M_1, \rho_1 \rangle$ and $\langle M_2, \rho_2 \rangle$ be metric spaces. Let $f: M_1 \to M_2$ then [05] prove that f is continuous on M_1 iff $f^1(G)$ is open in M_1 whenever G is open in M_2 .
- Q.5
- (a) State and prove Nested Interval theorem. [05]
 (b) If (M, ρ) is complete metric space and A is closed subset of M, then [05] prove that (M, ρ) is also complete.

OR

Q.5 State and prove Picard's fixed point theorem. [05] (a) is that the subset A of R connected iff [05] Show (b) whenever $a \in A, b \in B$ with a
b, then $c \in A$ for every c such that a < c < b.

2

Q.6

- (a) Let f be continuous function from the compact metric space M₁ into [05] the metric space M₂, then prove that the range $f(M_1)$ is also compact.
- (b) Let $\langle M_1, \rho_1 \rangle$ be a compact metric space. If f is continuous function [05] form M_1 into a metric space $\langle M_2, \rho_2 \rangle$, then prove that f is uniformly continuous.

OR

Q.6 Let $\langle M_1, \rho_1 \rangle$ be metric space and let A be a dense subset of M₁. If [10] f is a uniformly continuous function from $\langle A_1, \rho_1 \rangle$ into a complete metric space $\langle M_2, \rho_2 \rangle$ then prove that f can be extended to a uniformly continuous function F from M₁ into M₂.

 \odot \odot \odot

 $O_{i} = \frac{1}{2} \left\{ \frac$