

## (Master of Science) (Mathematics) (M.Sc.) (Mathematics) Semester (II)

| Course Code                    | PS02CMTH54         | Title of the<br>Course | Functional Analysis-I                    |
|--------------------------------|--------------------|------------------------|------------------------------------------|
| Total Credits<br>of the Course | 04                 | Hours per<br>Week      | 04                                       |
| Course                         | 1. To study finite | and infinite-din       | nensional vector spaces equipped with an |

| Course      | 1. To study limite and infinite-dimensional vector spaces equipped with an |  |
|-------------|----------------------------------------------------------------------------|--|
| Objectives: | inner product.                                                             |  |
|             | 2. To give a working knowledge and ideas of the theory of Hilbert spaces,  |  |
|             | bounded linear operators and their spectra, duals, and adjoint.            |  |
|             |                                                                            |  |

| Course Content |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Unit           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                        | Weightage* (%) |
| 1.             | Inner product spaces, normed linear spaces, examples of inner product<br>spaces, Polarization identity, Schwarz inequality, parallelogram law,<br>uniform convexity of the norm induced by inner product, orthonormal<br>sets, Pythagoras theorem, Gram-Schmidt othonormalization, Bessel's<br>inequality, Riesz-Fischer theorem. Hilbert spaces, orthonormal basis,<br>characterization of orthonormal basis, separable Hilbert spaces.           | 25             |
| 2.             | Uniqueness of best approximation from a convex subset of inner<br>product space to a point, orthogonality and best approximation,<br>existence and uniqueness of best approximation from a convex subset<br>of a Hilbert space to a point, continuity of a linear mapping, projection<br>theorem and Riesz representation theorem, weak convergence and<br>weak boundedness.                                                                       | 25             |
| 3.             | Bounded operators, equivalence of boundedness and continuity of an<br>operator, boundedness of the operator associated to an infinite matrix,<br>adjoint of a bounded operator, properties of adjoint, relations between<br>zero space and the range of operators, normal, unitary and self-adjoint<br>operators, examples, characterizations and results pertaining to these<br>operators, positive operators and generalized Schwarz inequality. | 25             |
| 4.             | Spectrum, eigenspectrum, approximate eigenspectrum, definition and<br>characterization, spectrum of a normal operator, examples, numerical<br>range, relations of numerical range and different spectra, spectral<br>theorem for a normal/self-adjoint operator on a finite dimensional<br>Hilbert space, <b>c</b> ompact operators, properties of compact operators.                                                                              | 25             |





| Teaching-   | Classroom teaching, problem solving, independent reading |
|-------------|----------------------------------------------------------|
| Learning    |                                                          |
| Methodology |                                                          |

| Evalu      | Evaluation Pattern                                                                                                                      |           |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Sr.<br>No. | Details of the Evaluation                                                                                                               | Weightage |
| 1.         | Internal Written / Practical Examination (As per CBCS R.6.8.3)                                                                          | 15%       |
| 2.         | Internal Continuous Assessment in the form of Practical, Viva-voce,<br>Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3) | 15%       |
| 3.         | University Examination                                                                                                                  | 70%       |

| Cou | Course Outcomes: Having completed this course, the learner will be able to                                                                                             |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.  | appreciate how functional analysis unifies the ideas of vector spaces, metric spaces and topological spaces, and complex analysis.                                     |  |
| 2.  | understand and apply the fundamental results in the theory of Hilbert spaces including the Riesz-representation theorem, Gram-Schmidt orthonormalization process, etc. |  |
| 3.  | understand the fundamentals of the spectral theory.                                                                                                                    |  |
| 4.  | prepared for an advanced course in Functional Analysis and Operator theory.                                                                                            |  |

| Suggested References: |                                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------|
| Sr.<br>No.            | References                                                                                  |
| 1.                    | Limaye B.V., Functional Analysis, New Age International Publ. Ltd., New Delhi, 1996.        |
| 2.                    | Simmons, G.F., Introduction to Topology and Modern Analysis, McGraw-Hill Co., Tokyo, 1963.  |
| 3.                    | Thumban Nair, Functional Analysis: A First Course, Prentice-Hall of India, New Delhi, 2002. |

On-line resources to be used if available as reference material

On-line Resources

