SARDAR PATEL UNIVERSITY

Master of Science – Materials Science (M.Sc.) Semester –II

(Effect from June, 2024)

Course Code	PS02CMTS57	Title of the Course	PRACTICAL-I
Total Credits of the	4	Hours per Week	12 hr
Course			

Course	To explore and understand various aspects of materials science and semiconductor	
Objectives:	physics through a series of experiments and studies, encompassing lattice parameter	
Ū	calculations, crystal growth methods, electronic properties of P-N junction diodes,	
	chemical structure visualization, resistivity determination, energy band gap	
	estimation, depletion capacitance study, Hall effect analysis, thermistor	
	characteristics determination, and heat treatment effects on different metals.	

Co	ourse Content		
Unit		Description	Weightage*
		0	(%)
1	Calculate the I	Lattice parameters (a Å), volume of unit cell, density of	
	unit cell, atom	nic radius(r) and average crystallite size(D), dislocation	
	density(ρ) and	microstrain(E) using diffractogram of NaCl crystal.	
2	Lattice parame	ters calculation using Debye Scherrer method.	
3	Growth of sing	gle crystal using the slow evaporation (using seed crystal	
	and without se	ed crystal) method.	
4	Calculation of	the materials constant of P-N junction diode.	
5	Calculation of	the energy-band gap of P-N junction diode.	
6	Drawing the ch	nemical structure using computer-based software.	
7	Determination	of resistivity of Germanium crystal at different	
	temperature ar	nd estimation of energy band gap by using Four probe	
	method.		
8	Study of deple	tion capacitance and its variation with reverse bias of PN	
	junction diode.		
9	Study of Hall e	ffect and estimation of Hall coefficient R _H , carrier density	
	(n) and carrier	mobility(μ) of n-type and p-type semiconductor.	
10	Determination	of thermistor characteristics.	
11	Heat treatment	of different metals: Quenching in different Media.	
Not	Note - Experiments can be added or deleted depending upon current advancements.		

Teaching Learning	Demonstration/Group discussion/ Panel/Hands on training
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2	Internal Continuous Assessment in the form of Practical, Viva- voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to	
1	Make use of different electronic devices used in the labs/industries.
2	Understand the principles of crystallography and apply them to calculate lattice
	parameters from a diffractogram
3	Develop skills in representing complex molecular structures and chemical reactions.

Su	ggested References:
1	Elements of X-Ray Diffraction" by B.D. Cullity and S.R. Stock
2	Introduction to Crystallography" by Donald E. Sands
3	Solid State Electronic Devices" by Ben G. Streetman and Sanjay Kumar Banerjee
4	Chem-Draw for Beginners" by Alexander D. MacKerell Jr.
5	Introduction to Solid State Physics" by Charles Kittel
6	Semiconductor Physics And Devices: Basic Principles" by Donald A. Neamen
7	Introduction to Thermoelectricity" by Julian Goldsmid
8	Materials Science and Engineering: An Introduction" by William D. Callister Jr.,
	David G. Rethwisch
9	The Science and Engineering of Materials" by Donald R. Askeland and Pradeep P.
	Fulay

On-line resources to be used if available as reference material	
1	https://nptel.ac.in/