

Course Code	Course Code PS03CAST51		KNOWLEDGE DISCOVERY AND DATA MINING
Total Credits of the Course	4	Hours per Week	4
Course Objectives:	design of data m course is aimed a	of this course is to provide introduction to the principles and a mining and statistical machine learning algorithms. The led at providing foundations for conceptual aspects of data hachine learning algorithms along with their applications to	

Cours	Course Content		
Unit	Description	Weightage* (%)	
1.	Review of classification methods from multivariate analysis, classification and decision trees. Clustering methods from both statistical and data mining viewpoints.	25	
2.	Unsupervised learning from univariate and multivariate data, dimension reduction and feature selection	25	
3.	Supervised learning from moderate to high dimensional input spaces, artificial neural networks and extensions of regression models, regression trees	25	
4.	Introduction to databases, including simple relational databases, data warehouses and introduction to online analytical data processing. (Revision) Association rules and prediction, data attributes, applications to electronic commerce	25	

Teaching- Learning	Interactive Class Lectures, ICT tools, Live Demonstrations & Algorithm Building.
Methodology	

Evalu	Evaluation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%

2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	rse Outcomes: Having completed this course, the learner will be able to
1.	understand data mining principles and techniques: Introduce DM as a cutting edge business intelligence method and acquaint the students with the DM techniques for building competitive advantage through proactive analysis, predictive modelling, and identifying new trends and behaviours.
2.	have a good understanding of the fundamental issues and challenges of machine learning: data, model selection, model complexity, etc.
3.	have an understanding of the strengths and weaknesses of many popular machine learning approaches.
4.	appreciate the underlying mathematical relationships within and across Machine Learning algorithms and the paradigms of supervised and un-supervised learning.
5.	design and implement various machine learning algorithms in a range of real-world applications.
6.	construct basic feed-forward artificial neural networks with backpropagation. This develops a good foundation for studying deep learning.

Sugges	Suggested References:	
Sr. No.	References	
1.	Berson, A. and Smith, S.J. (1997). <i>Data Warehousing, Data Mining, and OLAP</i> . McGraw Hill.	
2.	Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984). <i>Classification and Regression Trees</i> . Wadsworth and Brooks/Cole.	
3.	Han, J. and Kamber. M. (2000). <i>Data Mining; Concepts and Techniques</i> . Morgan Kaufmann.	
4.	Mitchell, T.M. (1997). Machine Learning. McGraw Hill	
5.	Ripley, B.D. (1996). <i>Pattern Recognition and Neural Networks</i> . Cambridge University Press.	

On-line resources to be used if available as reference material

On-line Resources

Course Code	PS03CAST52	Title of the Course	OPERATIONS RESEARCH – II
Total Credits of the Course	4	Hours per Week	4
Course Objectives:	so that they are ab machines) more ef 2. Knowledge of analysis of manag 3. Skills in the us tools in solving rea	rstand and analy ole to use resource ffectively. formulating ma erial problems in e of Operations al problems in in	vze managerial problems in industry ces (capitals, materials, staffing, and athematical models for quantitative n industry. Research approaches and computer

Course	Course Content		
Unit	Description	Weightage* (%)	
1.	Transportation Problem (TP): Introduction, Area of application, mathematical model of TP- maximization and minimization problems, Terminologies used in LPP. Degeneracy, Balanced and unbalanced TP. North-West Corner Method (NWCM), Least Cost Method (LCM), Vogel's Approximation Method (VAM), Modified Distribution Method (MODI)	25	
2.	Assignment Problem (AP): Introduction, Area of application, mathematical model of AP – maximization and minimization problems, Hungarian Method, Multiple Optimal Solutions.	25	
3.	Network Analysis: Introduction, Minimal spanning tree problem, Maximal flow problem. PERT and CPM- Terminologies used, Similarity and Differences, steps in PERT and CPM.	25	
4.	Inventory Control-Deterministic and Probabilistic models, Non-linear Programming Problem- Kuhn-Tucker Conditions, Introduction to Simulation Techniques and Sequencing Problems.	25	

Teaching-	Interactive Class Lectures, ICT tools used
Learning Methodology	

Evalu	Evaluation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	rse Outcomes: Having completed this course, the learner will be able to
1.	formulate a real-world problem as a mathematical programming model
2.	solve network models like the shortest path, minimum spanning tree, and maximum flow problems
3.	understand the applications of, basic methods for, and challenges in non-linear programming
4.	identify, mathematically express and solve transportation problems.
5.	learn optimality conditions for single- and multiple-variable unconstrained and constrained non-linear optimization problems, and corresponding solution methodologies
6.	be able to design and solve simple models of CPM and queuing to improve decision making and develop critical thinking and objective analysis of decision problems.
7.	be able to solve simple problems of replacement and implement practical cases of decision making under different business environments.
8.	identify, mathematically express and solve assignment problems.

Suggested References:		
Sr. No.	References	
1.	Kambo, N.S.(1991) Mathematical Programming Techniques Affiliated East-West Press Pvt. Ltd.	
2.	Operations Research, Paneerselvan, PHI.	

3.	Taha, H.A.(1992) Operations Research 5th Ed., Macmillan.
4.	Kanti Swarup, Gupta P. K. and Man Mohan Singh (1977) Operations Research, Sultan Chand & Sons.
5.	N. D. Vohra (2011) Quantitative Techniques in Management, 4th Ed., Mc Graw Hill.
6.	V. K. Kapoor(1998) Problems & Solutions in Operations Research, 2nd Ed., Sultan Chand & Sons.
7.	S. D. Sharma (2001) Operations Research, 13th Ed., Kedar Nath Ram Nath & Co.
8.	J. K. Sharma(2009) Quantitative Techniques For Managerial Decisions, 1st Ed., Macmillan

On-line resources to be used if available as reference material

On-line Resources

Course Code	PS03CAST53	Title of the Course	PRACTICALS
Total Credits of the Course	04	Hours per Week	04

Course	1.
Objectives:	2.

Course	Course Content		
Unit	Description	Weightage* (%)	
1.		25	
2.		25	
3.		25	
4.		25	

Teaching- Learning		
Methodology		

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.			
2.			
3.			

Sugges	Suggested References:		
Sr. No.	References		
1.			
2.			

On-line resources to be used if available as reference material
On-line Resources

Course Code	PS03CASTA54	Title of the Course	PRACTICALS
Total Credits of the Course	04	Hours per Week	04

Course	1.
Objectives:	2.

Course	Course Content		
Unit	Description	Weightage* (%)	
1.		25	
2.		25	
3.		25	
4.		25	

Teaching- Learning		
Methodology		

Evalu	Evaluation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to	
1.		
2.		
3.		

Sugges	Suggested References:	
Sr. No.	References	
1.		
2.		

On-line resources to be used if available as reference material
On-line Resources

Course Code	PS03CAST55	Title of the Course	COMPREHENSIVE VIVA-VOCE
Total Credits of the Course	01	Hours per Week	04

Course	1.
Objectives:	2.

Course	Course Content	
Unit	Description	Weightage* (%)
1.		
2.		
3.		
4.		

Teaching- Learning		
Methodology		

Evalu	Evaluation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to	
1.		
2.		
3.		

Sugges	Suggested References:		
Sr. No.	References		
1.			
2.			

On-line resources to be used if available as reference material
On-line Resources

Course Code	PS03EAST51	Title of the Course	Planning and Analysis of Industrial Experiments
Total Credits of the Course	04		04
Course Objectives:	 To learn how to plan, design and conduct experiments efficiently and effectively. To analyze the resulting data to obtain objective conclusions. To equip the student with modern statistical designs, and their applications in the industry. 		

Course	Course Content		
Unit	Description	Weightage* (%)	
1.	A review of basic concepts of design of experiment. Factorial Experiments: Concepts of main effects, interaction, Analysis of full 2n and 32 factorial designs, Confounding: Total and partial confounding. Analysis of 2n and 3n confounded design	25	
2.	2 (n-p) Fractional Factorial Designs: Basic Idea, Generating the Design, The Concept of Design Resolution, Plackett-Burman Designs for Screening, Enhancing Design Resolution via Foldover, Aliases of Interactions: Design Generators, Blocking, Replicating the Design, Adding Center Points, Analyzing the Results of a 2(n-p) Experiment.	25	
3.	3 (n-p) Fractional Factorial Designs: Overview, Designing 3(n-p) Experiments, Box-Behnken Designs, Analyzing the 3(n-p) Design, ANOVA, Parameter Estimates.	25	
4.	Central Composite and Non-Factorial Response Surface Designs: Overview, Design Considerations, Alpha for Rotatability and Orthogonality, Available Standard Designs, Analyzing Central Composite Designs, The Fitted Response Surface, Categorized Response Surfaces. Taguchi Methods: Robust Design Experiments: Overview, Quality and Loss Functions, Signal-to-Noise (S/N) Ratios, Orthogonal Arrays, Analyzing Designs, Accumulation Analysis	25	

Teaching- Learning	
Methodology	

Evalı	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	Appreciate the advantages and disadvantages of a design for a particular experiment.		
2.	Understand the potential practical problems in its implementation.		
3.	Construct optimal or good designs for a range of practical experiments.		
4.	Describe how the analysis of the data from the experiment should be carried out		

Suggested References:		
Sr. No.	References	
1.	Kshirsagar A.M. (1983) Linear Models (Marcel Dekker)	
2.	John P.W.M.(1971) Linear Models (John Wiley Ltd.)	
3.	Jeff Wu C. F., Hamada M. (2000): Experiments: Planning, Analysis and parameter design optimization, John Wiley & Sons.	
4.	Montgomery D.C. (2001): Design and Analysis of Experiments, 5th edition, Wiley New York.	
5.	Angela Dean and Daneil Voss (1999): Design and Analysis of Experiments, Wiley.	
6.	Phadke, M.S. (1989): Quality Engineering using Robust Design, Prentice-Hall.	

On-line resources to be used if available as reference material

On-line Resources

Course Code	PS03EAST52	Title of the Course	GENERALIZED LINEAR MODELS
Total Credits of the Course	04	Hours per Week	04

Course	To introduce the theory of generalized linear models (GLIM), estimation
Objectives:	and testing procedure and explain procedure for fitting of Genralized
	Linear Models for real data.

Course	Course Content			
Unit	Description	Weightage* (%)		
1.	Review of Linear Statistical Models, Discrete Response Data, Introduction of Generalized Linear Models (GLMs), Components: Linear Predictor, Link Function, Natural Parameters, Scale Parameters; Exponential Family of Distributions (EFD): Members of EFD: Normal, Lognormal, Exponential, Gamma, Binomial, Poisson, Negative Binomial; Steps for Model Fitting, Mean and Variance of EFD; Frequent Inference: Estimation of Parameters through Iteratively Reweighted Least Square (IRLS) and Algorithms, Form of Adjacent Dependent Variable and Weights, Analysis of Deviance, Nested Model and Non-Nested Model; Goodness of Fit Criteria: RSquare, Akaike Information Criterion (AIC), Schwarz Information Criterion (SIC), Bayesian Information Criterion (BIC); Step Wise Selection; Testing of Parameters through Wald Test; Confidence Intervals; GLMs Residuals: Residual Analysis, Pearson Residual, Anscombe Residual, Deviance Residual. Model Checking: Hat Matrix, Outlier, Leverage, Influence	25		
2.	 Binary Data: Models for Binary Data: Group Data and Ungroup Data, Linear Predictor, Link Function: Logit, Probit and Complementary Log Log; Prospective Study and Retrospective Study, Likelihood Function, Estimation of Parameters through IRLS Method; Deviance; Probit Model, Residual Analysis Polytomous Data: Introduction of Multinomial Logistic Regression and Ordinal Regression, Examples and their inference. Ordinal Regression 	25		

	Models with Qualitative or/and Quantitative Covariates; Parallel Line Regression	
3.	Count Data: Introduction Poisson Regression, Likelihood, Estimation and Testing of Parameters: Log Linear Model for Contingency Table and their Analysis Generalized Linear Models with distribution having Constant Coefficient of Variation; Gamma Family; Canonical Link Function; Inference and Residual Analysis of GLMs with Gamma Distribution; Comparison between Response having Gamma distribution and lognormal distribution; Examples and Applications	25
4.	Models for Survival Data: Estimation with Censored Survival Data and Survival Distribution: Exponential Distribution; Weibull Distribution and their Examples. Under and Over Dispersion Problem of Data, Quasi Likelihood for Estimation of Parameters, Properties of Quasi Likelihood, Analysis of Deviance; Quasi Likelihood: Binomial, Poisson, Normal, Gamma, Lognormal, Exponential; Comparison of Quasi Likelihood with Likelihood; Concept of Marginal Likelihood, Conditional Likelihood; Models with Nonlinear Parameters in Covariates; Model Checking: Checking Link Function, Checking Covariance Scale, Checking the Variance Function, Score Test for Extra Parameters, Checking Form of Covariates, Detection of Influential Observations	25

Teaching-	Discussion and question answers based learning
Learning	Black board/Multimedia projector using ICT Tools
Methodology	Learning through Problem solving approach
	Assignments and seminars are given for development of confidence
	among students
	Fitting of various models to data using software (demonstration of
	software R language for data handling)

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	

1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	Understand the differences between Linear model and generalized model and their underlying assumptions.		
2.	Various estimation procedures for estimation of parameters of different generalized models.		
3.	know Logit, Probit for binary data and their applications		
4.			

Suggeste	ted References:		
Sr. No.	References		
1.	Agresti, A. (2002). Categorical Data Analysis, ED.II, Wiley InterScience		
2.	Fahrmier,L .and Tutz,G.(2001). Multivariate Statistical Modeling Based on Generalizes Linear Models, Springer		
3.	Gill, J.(2001).Generalized Linear Models: A Unified Approach, Sage Publication		
4.	Lindsey, J.K. (1997). Applying Generalized Linear Models , Springer		
5.	Maindonald,J. And Braun,J. (2007). Data Analysis and Graphics using R: An example based approach Ed.II, Cambridge University Press		
6.	McCullagh, P. And Nelder, J.A. (1983). Generalized Linear Models- Monographs on Statistics and Applied Probability, Chapman and Hall		
7.	Myers, R.H, Montegomery, D.C., Vinning, G.G and Robinson, T.J.(2010). Generalized Linear Models with Applications in Engineering and the Sciences,		

	Ed.II, Wiley Series in Probability and Statistics, A John Wiley & Sons.		
8.	Agresti, A. (2002). Categorical Data Analysis, ED.II, Wiley InterScience		
9.	Fahrmier,L .and Tutz,G.(2001). Multivariate Statistical Modeling Based on Generalizes Linear Models, Springer		
10.	Gill, J.(2001).Generalized Linear Models: A Unified Approach, Sage Publication		

On-line resources to be used if available as reference material

On-line Resources

Course Code	PS03EAST53	Title of the Course	SURVIVAL ANALYSIS
Total Credits of the Course	04	Hours per Week	04

Course Objectives:	 Survival analysis involves the analysis of time-to-event data and is widely used in health and medicine. The objective of this course is introducing the fundamental concepts of survival analysis and basic principles such as censoring, survival and hazard functions, Cox proportional hazards regression, model diagnostics and model extensions to incorporate recurrent events and competing risks. To introduce various frailty models.
-----------------------	--

Course	Course Content		
Unit	Description	Weightage* (%)	
1.	Survival data, Concepts of time, order and random and hybrid censoring, Life distributions - exponential, gamma, Lognormal, Pareto, linear failure rate, Ageing classes - IFR, IFRA, NBU, NBUE, HNBUE and their duals, Bathtub failure rate. Parametric inference, point estimation, confidence Intervals, scores, tests based on LR, MLE	25	
2.	Life tables, failure rate, mean residual life and their elementary properties. Estimation of survival function - Actuarial estimator, Kaplan - Meier estimator, Estimation under the assumption of IFR/DFR	25	
3.	Semi-parametric regression for failure rate - Cox's proportional hazards model, partial likelihood, estimation and inference methods for the Cox models, time-dependent covariates, residuals and model diagnosis, functional forms of the Cox models, goodness-of-fit tests for the Cox models, Competing risk models, Repair models, Probabilistic models, Joint distribution of failure times Unconditional tests for the time truncated case, Tests for exponentiality, two sample nonparametric problem.	25	
4.	Nelson-Aalen estimators, counting processes and martingales, modeling counting processes, Regression models for modeling multiple events, Frailty models, Shared frailty models, Identifiability of frailty models, Frailty regression models, Bivariate and correlated frailty models, Additive frailty models.	25	

Teaching- Learning			
Methodology			

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Course Outcomes: Having completed this course, the learner will be able to			
1.	decide the type of censoring and truncation that is the basis for given survival data		
2.	estimate survival functions using parametric and non-parametric methods		
3.	construct a life table using the Kaplan-Meier approach		
4.	interpret coefficients in Cox proportional hazards regression analysis		
5.	compare survival functions of two or more populations; use software for survival analysis		
6.	explain theoretical concepts underlying parametric survival models; and		
7.	analyse survival data using basic parametric models and interpret the results		

Suggested References:				
Sr. No.	References			
1.	Klein, J. P. and Moeschberger, M. L. (1997). Survival Analysis: Techniques for Censored and Truncated Data , Springer, New York			

2.	Collett, D. (2003). Modelling Survivaldata in Medical Research, Second Edition, Chapman & Hall/CRC
3.	Therneau, T. M. and Grambsch, P. M. (2000). Modeling Survival Data, Extending the Cox Model, Springer, New York.
4.	Cox, D.R. and Oakes, D. (1984). Analysis of Survival Data, Chapman and Hall.
5.	Deshpande, J.V. and Purohit, S.G. (2005). Life Time Data: Statistical Models and Methods, Word Scientific.
6.	Duchateau, L. and Johnson, P. (2008). The Frailty Model. Springer: New York.
7.	Hanagal, D. D. (2011). Modeling Survival Data Using Frailty Models. CRC Press.
8.	Kalbfleish, JD. and Prentice, RL. (2002). The Statistical Analysis of Failure Time Data. New York: Wiley.
9.	Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer: New York.
10.	Wienke, A. (2011). Frailty Models in Survival Analysis, CRC Press: New York.

On-line resources to be used if available as reference material
On-line Resources

MASTER OF SCIENCE IN APPLIED STATISTICS M.Sc. Applied Statistics, Semester – III

Course Code	PS03CAST56	Title of the Course	PLANNING AND ANALYSIS OF INDUSTRIAL EXPERIMENTS
Total Credits of the Course			4
Course Objectives:	Experiments, that valid in efficiency.	for planning, de formation can	th the statistical technique viz. Design of signing and analyzing the experiment so be drawn effectively and with great ethods of designing experiments.

3. To enable applicability of experimental designs and efficient execution.

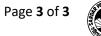
Cours	Course Content			
Unit	Description	Weightage* (%)		
Ι	A review of basic concepts of design of experiment. Factorial Experiments: Concepts of main effects, interaction, Analysis of full 2^n and 3^2 factorial designs, Confounding: Total and partial confounding. Analysis of 2^n and 3^n confounded design.	25		
II	$2^{(n-p)}$ Fractional Factorial Designs: Basic Idea, Generating the Design, The Concept of Design Resolution, Plackett-Burman Designs for Screening, Enhancing Design Resolution via Foldover, Aliases of Interactions: Design Generators, Blocking, Replicating the Design, Adding Center Points, Analyzing the Results of a $2^{(n-p)}$ Experiment.	25		
III	$3^{(n-p)}$ Fractional Factorial Designs: Overview, Designing $3^{(n-p)}$ Experiments, Box-Behnken Designs, Analyzing the $3^{(n-p)}$ Design, ANOVA, Parameter Estimates.	25		
IV	Central Composite and Non-Factorial Response Surface Designs: Overview, Design Considerations, Alpha for Rotatability and Orthogonality, Available Standard Designs, Analyzing Central Composite Designs, The Fitted Response Surface, Categorized Response Surfaces. Taguchi Methods: Robust Design Experiments: Overview, Quality and Loss Functions, Signal-to-Noise (S/N) Ratios, Orthogonal Arrays, Analyzing designs, Accumulation Analysis.	25		

Teaching- Learning Methodology	Interactive Class Lectures, ICT tools, Live Demonstrations & Algorithm Building.
--------------------------------------	--

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to		
1.	To know how to plan, design and conduct experiments efficiently and effectively using various designs.	
2.	Make use of the basics of Design of Experiments such as randomization and blocking.	
3.	Appreciate the advantages and disadvantages of a design for a particular experiment	
4.	Construct optimal or good designs for a range of practical experiments	
5.	Understand the potential practical problems in its implementation.	
6.	To describe how the analysis of the data from the experiment should be carried out.	

Sugge	Suggested References:			
Sr. No.	References			
1.	Kshirsagar A.M. (1983) Linear Models (Marcel Dekker)			
2.	John P.W.M. (1971) Linear Models (John Wiley Ltd.)			
3.	Jeff Wu C. F., Hamada M. (2000): Experiments: Planning, Analysis and parameter design optimization, John Wiley & Sons.			
4.	Montgomery D.C. (2001): Design and Analysis of Experiments, 5th edition, Wiley New York.			
5.	Angela Dean and Daneil Voss (1999): Design and Analysis of Experiments, Wiley.			


6.

Phadke, M.S. (1989): Quality Engineering using Robust Design, Prentice-Hall.

On-line resources to be used if available as reference material

On-line Resources

(Master of Science in Applied Statistics) (Master of Science) (M. Sc.) (Applied Statistics) Semester (III)

Course Code	PS03EAST54	Title of the Course	Pattern Recognition
Total Credits of the Course	04	Hours per Week	04
Course Objectives:	• Introduce for recognition.		oncepts and techniques of statistical pattern

ctives:		recognition.
	٠	Equip students with essential algorithms and techniques for supervised and
		unsupervised learning.
	٠	Provide hands-on experience with practical applications of pattern

recognition.Develop critical thinking skills for evaluating and adapting algorithms to different scenarios.

Course	Course Content		
Unit	Description	Weightage* (%)	
1.	Overview of pattern recognition and its applications, Field related to pattern recognition: Artificial Intelligence, Machine Learning, Image Analysis, stages in pattern recognition, approaches to statistical pattern recognition: Bayes decision rule for minimum error, Bayes decision rule for minimum risk, Neyman-Pearson decision rule, linear discriminant functions, density estimation: parametric approach- Normal based models, maximum likelihood parameter estimation, Expectation Maximization (EM) algorithm Bayesian estimation.	25	
2.	Nonparametric density estimation – Bayesian belief networks, KNN method, Kernel density estimation. Supervised learning algorithms: Linear regression, Classification algorithms: k-Nearest neighbors, decision trees, support vector machines, ensemble methods.	25	
3.	Unsupervised Learning – clustering problem: partition methods – k- means clustering, k-medoid clustering; Hierarchical methods – Agglomerative algorithms: single linkage algorithm, complete linkage algorithm; evaluation of clustering. Feature selection criteria, Linear feature extraction: Principal Component Analysis (PCA), Singular Value Decomposition (SVD), Introduction to Artificial Neural Network (ANN).	25	

4. Pattern recognition for sequential data: Markov models, Hidden Markov 25 Models (HMM), Maximum likelihood for the HMM, forward-backward algorithm, sum-product algorithm, Viterbi algorithm. Case studies: Exploring real world applications of pattern recognition in different domains such as, image processing, fraud detection and so on.

Teaching- Learning Methodolo	• Engage students through traditional lectures, providing conceptual understanding of statistical pattern recognition algorithms and their applications.
gy	• Facilitate practical learning through hands on exercises, allowing students to implement algorithms using programming languages like Python.

Eval	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	Comprehensive understanding of statistical pattern recognition algorithms and their applications.		
2.	Ability to choose appropriate algorithms based on the nature of the data and task.		
3.	Exhibit critical thinking skills in evaluating and comparing different approaches.		
4.	Prepare students for industry roles by integrating case studies and platforms commonly used in pattern recognition applications.		

Suggested References:		
Sr. No.	References	
1.	Christopher M. Bishop (2006): Pattern Recognition and Machine Learning, Springer.	
2.	Andrew R. Webb (2002): Statistical Pattern Recognition, 2E, John Wiley and Sons.	
3.	Duda et al. (2001): Pattern Classification, 2E, John Wiley	
4.	K. Fukunaga (1990): Introduction to statistical pattern recognition, 2e, AP	
5.	B. D. Ripley (1996): Pattern Recognition and Neural Networks, Cambridge university	
	Press.	
6.	M. Friedman and A. Kandel (2020): Introduction to Pattern Recognition, World	
	Scientific.	

On-line resources to be used if available as reference material

https://www.javatpoint.com/pattern-recognition-in-machine-learning

https://onlinecourses.nptel.ac.in/noc23_ee119/preview

https://www.geeksforgeeks.org/pattern-recognition-basics-and-design-principles/

