

Course Code	US03MAMTH01	Title of the Course	Ordinary Differential Equations
Total Credits of the Course	4	Hours per Week	4 hours

Course	1. To teach Ordinary Differential Equations in more depth.
Objectives:	2. To make practice of Ordinary Differential Equations
-	3. To apply Ordinary Differential Equations in real life problem.
	4. To teach Laplace Transform and their properties.

Cours	se Content		
Unit	Description	n	Weightage* (%)
1.	Differentia Factors, Di Differentia	l Equations. Exact Differential Equations, Integrating Ifferential Equations of the First Order and of Higher Degree, l Equation Solvable for p, for y and for x, Clairaut's Equation	25%
2.	Linear Diff Complimen Operators, Operators, f(D)y=X w function of	ferential Equations with Constant Coefficients, ntary Function and Particular Integral, Operators, Products of Determination of Complimentary Function, Inverse Determination of Particular Integral and Working rules for where, $X = e^{mx}$, sin mx , cos mx , x^m , $e^{ax}V$, xV (V is a F x only). Homogeneous Linear Differential Equations.	25%
3.	Laplace Transform, Properties of Laplace Transform, Laplace25%Transform of Derivatives, Laplace Transform of Integrals, Inverse25%Laplace Transforms, and Properties of Inverse Laplace Transforms, Solution of ODE with Constant Coefficients, Solution of ODE with Variable Coefficients.25%		25%
4	Application of Differential Equations: Newton's law of cooling, Rate of growth or decay, Chemical solution, Motion of particle falling under gravity, Electric Circuits, Orthogonal Trajectories.25%		25%
Teaching- Learning required. Methodology		Classroom teaching, Presentation by students, Use of ICT whe required.	enever

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learnerwill be able to	
1.	realize the importance of Ordinary Differential Equations
2.	solve the problems of Ordinary Differential Equations.
3.	apply the knowledge of Ordinary Differential Equations in real life problem.
4.	to learn Laplace Transforms and their properties.

Sugg	Suggested References:	
Sr. No.	References	
1.	Shanti Narayan, Integral Calculus, 14th Edition, S. Chand & Company Ltd., New Delhi, 1996 Chapter: 11(11.8,11.9 Only), 12,13,14	
2.	Nita Shah, Ordinary and Partial Differential Equations – Theory and Applications, PHI Learning Pvt. Ltd., New Delhi Chapter : 16 (Except 16.10,16.11)	
3.	Zafar Ahsan, Differential Equations and Their Applications, 2 nd Ed., Prentice – Hall of India Pvt. Ltd., New Delhi	
4.	B. S. Grewal, Higher Engineering Mathematics, 35 th Edition, Khanna Publications	
5.	D J Karia, N Y Patel, B P Patel, M L Patel, Introduction to calculus and differential equations, Roopal Prakashan.	
On-line resources to be used if available as reference material		
On-line Resources		

Course Code	US03MAMTH02	Title of the Course	MULTIVARIATE CALCULUS
Total Credits of the Course	4	Hours per Week	4

Course	1. To teach Multivariate Calculus.
Objectives:	2. To teach Applications of various results of Multivariate Calculus.

Course Content		
Unit	Description	Weightage* (%)
1.	Beta and Gamma Functions and Their Properties, Relation Between Beta and Gamma functions and Examples, Graphical representation of functions of two variables: cone, cylinder, conicoids, etc. Vector Calculus: Gradient of scalar field, Directional derivatives, Tangent Plane and Normal Vector to a Surface, Divergence and Curl of a Vector Field.	25%
2.	Line integral, Evaluation of Line Integrals, Double Integral, Change of Variables in Double Integral, Application of Double integral, Change of Order of Integration in Cartesian Form	25%
3.	Line Integral Independent of Path, Green's Theorem and its Application with Examples, Area of Plane Region, Vector Form of Green's Theorem, Surfaces, Tangent Plane and Normal Line to the Surface, First Fundamental Form, Area of a Surface, Surface Integrals	25%
4.	Triple Integrals, Divergence Theorem of Gauss and its Applications With Examples, First and Second Form of Green's Theorem, Application of Triple Integral (Total Mass, Moment of Inertia, Volume), Stoke's Theorem.	25%

Teaching-	Classroom teaching, Presentation by students, Use of ICT whenever
Learning	required.
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to	
1.	Understand Beta and Gamma functions and their properties.
2.	Understand elementary Vector Calculus.
3.	Understand line, double and triple integrals.
4.	Apply the results understood above to physics and mechanics.

Sugges	Suggested References:		
Sr. No.	References		
1.	E.Kreyszing , Advanced Engineering Mathematics , Fifth edition , New Age International (P) Ltd., New Delhi , 1997. Chapter : 9		
2.	Shanti Narayan, A course of Mathematical Analysis, S.Chand & Company Ltd. Appendix I (A.4, A.5, A.6)		
3.	B.S.Grewal, Higher Engineering Mathematics, Thirty-fifth edition,Khanna Publ		
4.	Dr.Dinesh Karia, M.L.Patel, N.Y.Patel, B.P.Patel, A Textbook of Calculus with an Introduction to Differential Equations.		

On-line Resources

Course Code	US03MAMTH03	Title of the Course	Problems and Exercises in Ordinary Differential Equation & Multi-Variate Calculus
Total Credits of the Course	4	Hours per Week	4 hours

Course Objectives:	 To develop problem solving skills of students through interactive teaching and supervised practice. To teach students various methods of solving and applying results of Ordinary Differential Equations. To teach students various methods of solving and applying results of Multivariate Calculus.
-----------------------	---

	Course Content			
	PART-I(ORDINARYDIFFERENTIALEQUATIONS)			
Unit	Description	Weightage* (%)		
1.	Differential Equations, Exact Differential Equations; Integrating Factors, Differential Equations of the First Order and of Higher Degree	10%		
2.	Differential Equation Solvable for p, for x and for y; Clairaut's Equation, Linear Differential Equations with Constant Coefficients, Complimentary Function and Particular Integral, Determination of Particular Integral and Working rules for $f(D)y = X$ where $X=e^{mx}$, $\sin mx$, $\cos mx$, x^m	10%		
3.	Determination of Particular Integral and Working rules for $f(D)y = X$, where $X = e^{ax}V$, xV (where V is a function of x only). Homogeneous Linear Differential Equations	10%		
4	Laplace Transform, Properties of Laplace Transform, Laplace Transform of Derivatives, Laplace Transform of Integrals, Inverse Laplace Transforms, Properties of Inverse Laplace Transforms, Solution of ODE with Constant Coefficients, Solution of ODE with Variable Coefficients	10%		
5.	Application of Differential Equations, Orthogonal Trajectories in Cartesian Co-ordinates	10%		

PART- II (MULTI-VARIATE CALCULUS)

Unit	Description	Weightage* (%)
1.	Improper integrals, Beta Functions, Gamma Functions, Relation Between Beta and Gamma functions	10%
2.	Vector Calculus: Gradient, Divergence and Curl, Directional derivatives, Tangent Plane and Normal Vector to a Surface	10%
3.	Line integral, Double Integral, Change of Variables in Double Integral, Application of Double integral, Change of Order of Integration in Cartesian Form.	10%
4.	Area of a Surface, Surface Integrals, Moment of Inertia of Surface, Verify Green's Theorem, Triple Integrals	10%
5.	Application of Divergence Theorem of Gauss, Application of Triple Integral (Total Mass, Moment of Inertia, Volume)	10%

Teaching- Learning Methodology	Class room teaching, Presentation by students, Use of ICT whenever required.		
NOTE:	1.	Use of the standard textbooks may be permitted at the time of Practical Examination.	
	2.	Use of non-programmable Scientific Calculator is Allowed.	
	3.	There would be a batch of problem solving session of eight hours per weekandtheywillbeconductedinbatchesofstudentsofsize20to25 per batch.	
	4.	The candidate shall have to produce at the time practical Examination the record of their prescribed Laboratory work, certified by the Head of the Department.	

Evaluation Pattern			
Sr.No.	Details of the Evaluation	Weightage	
1.	Internal Written/Practical Examination (AsperCBCSR.6.8.3)		
2.	Internal Continuous Assessment in the form of Practical, Viva- voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)		

3.	University Examination: Practical Examination of each PART1009will be conducted separately, each of 50% weightage.1009		100%
Course	e Out	comes: Having completed this course, the learner will be able to	
1.	Ider	ntify and classify an Ordinary Differential Equation.	
2.	Solv	ve Ordinary Differential Equations.	
3.	app] solv	lyknowledgeofOrdinaryDifferentialEquationtosolvecertainproblemsin e Laplace transformation problems.	Science 4.
4.	Solv Inte	ve problems of Beta and Gamma Functions; andevaluate Line, Double grals.	and Triple
5.	Solv	ve problems in Vector Calculus.	
6.	app	lyresultsofMultivariateCalculustosolvecertainproblemsinScience.	

Suggested	References:
Sr.No.	References
1.	S.S.Sastry,IntroductorymethodsofNumericalanalysis,PrenticeHallOfIndia, 2010
2.	Brain Bradie, AFriendly Introduction to Numerical analysis, Pearson Education, India,2007.
3.	G. Sankar Rao, Numerical analysis.
4.	B.S. Grawal, Numerical Analysis.
5.	Bajpai, Calus and Farly, Numerical Analysis for scientists and Engineers, John Wiely.
6.	E. Kreyszing, Advanced Engineering Mathematics, Fifth edition, New Age International (P)Ltd., NewDelhi,1997.
7.	Shanti Narayan, A course of Mathematical Analysis, S. Chand & Company Ltd.
8.	B.S.Grewal,HigherEngineeringMathematics,Thirty-fifthedition,KhannaPubl.

On-line resources to be used if available as reference material

Course Code	US03IDMTH01	Title of the Course	Graph Theory	
Total Credits of the Course	2	Hours per Week	2 hours	
Note: This course is same as US04MIMTH01. The students opting for this course shall not be offered US04MIMTH01.				

Course Objectives:	 To teach students Introductory Graph Theory. To teach students various types of operations on graphs. To teach students fundamental properties of various types of graphs.
-----------------------	--

Course Content			
Unit	Description	Weightage* (%)	
1.	Graph, Applications of graph, Finite and infinite graph, Incidence and Degree, Isolated vertex, Pendant vertex and null graph, Isomorphism, Sub graphs, Walks, Paths and circuits.	25%	
2.	Connected and disconnected Graphs, Components, Euler graphs, Operation on graph, More on Euler graphs, Arbitrary Traceable graph Hamiltonian paths and circuits.	25%	

Teaching-	Classroom teaching, Presentation by students, Use of ICT whenever
Learning	required.
Methodology	

Eval	Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage		
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	25%		
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	25%		
3.	University Examination	50%		

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	understand basic concepts of Graph Theory.		
2.	identify types of graphs and use various operations on graphs to solve problems.		
3.	take up an Elementary to Intermediate course in Graph Theory		

Sugg	gested References:		
Sr. No.	References		
1.	Narsingh Deo, Graph theory with application to engineering and Computer science, Fourth printing, prentice Hall of India, 1987. Chapter 1 (except 1.6), Chapter 2 (except 2.3,2.10), Chapter 3 (except 3.5,3.10), Chapter 4 (except4.6,4.7,4.8)		
2.	J. Clark and A. D. Holton, A first look at Graph Theory, First Indian Reprint. Allied Publishers, 1995.		
3.	D. B. West, Introduction to graph theory, Prentice Hall of India, New Delhi, 1999.		

On-line resources to be used if available as reference material	
On-line Resources	

Course Code	US03IDMTH02	Title of the Course	Problems and Exercises in Graph Theory
Total Credits of the Course	2	Hours per Week	4 hours
Note: This cour not be offered	rse is same as US04 US04MIMTH02.	4MIMTH02. T	he students opting for this course shall

Course Objectives:	 To develop problem solving skills of students through interactive teaching and supervised practice. To teach students various methods of solving and applying results of Graph Theory. To teach students various types of subgraphs and their methods.
-----------------------	--

	List of Practicals	
Sr. No.	Description	Weightage* (%)
1.	Finite and infinite graph, Incidence and Degree, Isolated vertex, pendant vertex and null graph,	20%
2.	Subgraphs – vertex disjoint and edge disjoint, subgraphs induced by some vertices, Walks, Paths and circuits, Four cube problem.	20%
3.	Connected and disconnected Graphs, Components, distance, diameter, eccentricity, center of a connected graph.	20%
4	Construction of new graphs by different operations on graphs, union, intersection and ring sum.	20%
5.	Euler graphs, Konisberg's seven bridge problem, traceble graphs, Hamiltonian graph and traveling salesman problem.	20%

Evalua	ation	Pattern	
Sr. No.		Details of the Evaluation	Weightage
1.		Internal Written / Practical Examination (As per CBCS R.6.8.3)	
2.		Internal Continuous Assessment in the form of Practical, Viva- voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	
3. University Practical Examination		University Practical Examination	100%
Course Outcomes: Having completed this course, the learner will be able to		-	
1.	identify and categorize Graph Theory.		
2.	solve problems of Graph Theory.		
3.	apply knowledge of Graph Theory to solve certain problems in real life.		

Suggested	Suggested References:		
Sr. No.	References		
1.	Narsingh Deo, Graph theory with application to engineering and Computer science, Fourth printing, prentice Hall of India, 1987. Chapter 1 (except 1.6), Chapter 2 (except 2.3,2.10), Chapter 3 (except 3.5,3.10), Chapter 4 (except 4.6,4.7,4.8)		
2.	J. Clark and A. D. Holton, A first look at Graph Theory, First Indian Reprint. Allied Publishers,1995.		
8.	B. S. Grewal, Higher Engineering Mathematics, Thirty-fifth edition, Khanna Publ.		

I

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.11) Syllabus with effect from the Academic Year 2024-2025

Course Code	US03IDMTH03	Title of the Course	Number Theory
Total Credits of the Course	2	Hours per Week	2 hours
Note: This cour not be offered	rse is same as US04 US04MIMTH03.	4MIMTH03. T	he students opting for this course shall

Course Objectives:1. To teach students Introductory Number Theory.2. To teach students types of fundamental operations and functions in Number Theory.3.To teach students various properties of Prime Numbers.
--

Cours	Course Content			
Unit	Description	Weightage* (%)		
1.	Divisibility: definition and properties, Common Divisors, Greatest Common Divisor (GCD): definition and examples, Properties of GCD, Division Algorithm, Euclidean Algorithm, LCM: definition and examples, Properties of LCM, Relation between GCD and LCM.	25%		
2.	Prime Numbers, Properties of Primes, Fundamental Theorem of Arithmetic, Linear Congruences: definition and properties, Statement and interpretation of the Chinese Remainder Theorem, Definition of Euler's function, Statement and interpretation of Euler's theorem, Statement and interpretation of Fermat's theorem.	25%		

Teaching-	Classroom teaching, Presentation by students, Use of ICT whenever
Learning	required.
Methodology	

Eval	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	25%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	25%	
3.	University Examination	50%	

Course Outcomes: Having completed this course, the learner will be able to		
1.	understand basic concepts of Number Theory.	
2.	use various operations and functions in Number Theory to solve problems.	
3.	take up an Elementary to Intermediate course in Number Theory	

Sugg	ested References:
Sr. No.	References
1.	D. Burton , elementary Number Theory, 6th Ed , Tata McGraw-Hill Edition, Indian reprint.
2.	I. Niven And H. Zuckermar , An Introduction to the theory of Numbers, Wiley- Eastern Publication.
3.	S. Barnard and J. N. Child , Higher Algebra, Mc Millan and Co. Ltd.
4.	Neville Robinns, Beginning Number Theory, 2nd Ed.,Narosa Publishing House Pvt.Ltd. Delhi,2007

On-line Resources

Course Code	US03IDMTH04	Title of the Course	Problems and Exercises in Number Theory	
Total Credits of the Course	2	Hours per Week	4 hours	
Note: This course is same as US04MIMTH04. The students opting for this course shall not be offered US04MIMTH04.				

Objectives:teaching and supervised practice.5.To teach students various methods of solving and applying results of Number Theory.	Course Objectives:
--	-----------------------

List of Practicals				
Sr. No.	Description	Weightage* (%)		
1.	Examples based on the following topics.1. Divisibility and Division Algorithm.2. Properties of divisors and GCD.3. Finding GCD by Euclidean Algorithm.	20%		
2.	Examples based on the following topics.1. Finding LCM and problems related to properties of LCM.2. Relation between GCD and LCM.	20%		
3.	Examples based on the following topics.1. Primes and divisibility.2. Properties of primes.3. Fundamental theorem of arithmetic.	20%		
4	Examples based on the following topics.1. Solving Linear Congruences.2. Chinese Remainder Theorem.	20%		
5.	 Examples based on the following topics. 1. Properties of Euler's function. 2. Numericals on Euler's theorem and Fermat's theorem. 	20%		

Evaluation Pattern				
Sr. No	0.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)			
2.		Internal Continuous Assessment in the form of Practical, Viva- voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	1	
3.		University Practical Examination	100%	
Course	Course Outcomes: Having completed this course, the learner will be able to			
1.	identify and categorize Number Theory.			
2.	solve problems of Number Theory.			
3.	apply knowledge of Number Theory to solve certain problems in real life.			

Suggested	Suggested References:		
Sr. No.	References		
1.	D. Burton , elementary Number Theory, 6th Ed , Tata McGraw-Hill Edition, Indian reprint.		
2.	I. Niven And H. Zuckermar, An Introduction to the theory of Numbers, Wiley- Eastern Publication.		
3.	S. Barnard and J. N. Child , Higher Algebra, Mc Millan and Co. Ltd.		
4.	Neville Robinns, Beginning Number Theory, 2nd Ed., Narosa Publishing House Pvt.Ltd. Delhi,2007		

On-line resources to be used if available as reference material

Course Code	US03IDMTH05	Title of the Course	Mechanics	
Total Credits of the Course	2	Hours per Week	2 hours	
Note: This course is same as US04MIMTH05. The students opting for this course shall not be offered US04MIMTH05.				

Course Content		
Unit	Description	Weightage* (%)
1.	Ingredients of mechanics, Position vector, Velocity vector, Acceleration vector, Gradient vector, Fundamental laws of Newtonian mechanics, Theory of dimensions.	25%
2.	Plane statics, Equilibrium of a particle, Equilibrium of systems of particles, Moment of force about a line, Necessary and sufficient condition for equilibrium.	25%

Teaching-	Classroom teaching, Presentation by students, Use of ICT whenever
Learning	required.
Methodology	

Eval	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	25%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	25%	
3.	University Examination	50%	

Course Outcomes: Having completed this course, the learner will be able to		
1.	understand basic concepts of Mechanics.	
2.	apply results of mechanics in specific situations.	
3.	take up an Elementary to Intermediate course in Mechanics.	

Sugg	Suggested References:	
Sr. No.	References	
1.	J. L. Synge and B. A. Griffith, Principles of Mechanics. Chapter 1, Chapter 2(2.2,2.3,2.4), Chapter 3(3.1, 3.4), Chapter 4(4.1,4.2)	
2.	P. N. Chatterjee, Statics and Dynamics	

On-line resources to be used if available as reference material

On-line Resources

Course Code	US03IDMTH06	Title of the Course	Problems and Exercises in Mechanics
Total Credits of the Course	2	Hours per Week	4 hours
Note: This course is same as US04MIMTH06. The students opting for this course shall not be offered US04MIMTH06.			

Course Objectives:	 To develop problem solving skills of students through interactive teaching and supervised practice. To teach students various methods of solving and applying results of Mechanics.
	results of Mechanics.

	List of Practicals	
Sr. No.	Description	Weightage* (%)
1.	Problems on: Position vector, Velocity vector, Acceleration vector, Gradient vector. Interpretation of gradient.	20%
2.	Fundamental laws of Newtonian mechanics, Dimensions of physical quantities. Equilibrium of a particle.	20%
3.	Notion of force, equations of motion. Solution of equations of motion in simple situations.	20%
4	Equilibrium of systems of particles, Moment of force about a line.	20%
5.	Necessary and sufficient condition for equilibrium, Examples on equilibrium system. Application in plane statics.	20%

Evalua	ation	Pattern	
Sr. No	0.	Details of the Evaluation	Weightage
1.		Internal Written / Practical Examination (As per CBCS R.6.8.3)	
2.		Internal Continuous Assessment in the form of Practical, Viva- voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	
3.		University Practical Examination	100%
Course Outcomes: Having completed this course, the learner will be able to			-
1.	identify and categorize Mechanics.		
2.	solve problems of Mechanics.		
3.	apply knowledge of Mechanics to solve certain problems in real life.		

Suggested References:		
Sr. No.	br. No. References	
1.	J. L. Synge and B. A. Griffith, Principles of Mechanics. Chapter 1, Chapter 2(2.2,2.3,2.4), Chapter 3(3.1, 3.4), Chapter 4(4.1,4.2)	
2.	P. N. Chatterjee, Statics and Dynamics	

	(B.Sc.)	(Mathematics)	Semester (5)
Course Code		Title of the	Advanced Celoulus
	USUSIDM1107	Course	Advanced Calculus
Total Credits	2	Hours per	2 hours
of the Course	2	Week	2 110018
Note: This course is same as US04MIMTH07. The students opting for this course shall			
not be offered US04MIMTH07.			

Course Objectives:	• Understand the concept of double & triple integrations and its applications.
	• Understand the fundamental theorem of vector calculus, including, Green's theorem, Stokes' theorem, and the divergence theorem.
	• Develop critical thinking skills to solve problems in Physics and Engineering.

Course Content		
Unit	Description	Weightage* (%)
1.	Double Integrals and its applications, Double integrals in polar coordinates, Change of Variables in Double Integrals, Change of Order of Integration, plane area using double integrals, Triple Integrals and its applications.	25%
2.	Vector Calculus: Gradient of scalar fields, Directional derivatives, Tangent Plane and Normal Vector to the Surface, Divergence and Curl of a Vector Field, Line integrals, Evaluation of Line Integrals, Line Integral Independent of Path, Green's Theorem (without proof) and its Application with Examples, Surface area, Surface Integrals, Divergence Theorem of Gauss (without proof) and its Applications with Examples, Stoke's Theorem (without proof) and its Applications with Example.	25%

Teaching-	Classroom teaching, Presentation by students, Use of ICT whenever
Learning	required.
Methodology	

Course Outcomes: Upon completion of the course, the student will be able to	
1.	understand double and triple integrals.
2.	find area and volume.
3.	understand line integral, surface integrals.
4.	apply the result in Physics.

Suggested References:		
Sr. No.	References	
1.	E. Kreyszing, Advanced Engineering Mathematics, Fifth edition, New Age International (P) LTD, New Delhi, 1997.	
2.	R. K. Jain, S.R.K. Iyenger, Advanced Engineering Mathematics, Fifth Edition, Narosa publishing House, New Delhi, 2017.	
3.	B.S. Grewal, Higher Engineering Mathematics, 42th Edition, Khanna Publishers, Nai Sarak, Delhi, 2012.	
4.	Shanti Narayan, A course of Mathematics Analysis, 29 th edition, S. Chand & company Ltd, New Delhi, 2005.	

Course Code	US03IDMTH08	Title of the Course	Problems and Exercises in Advanced Calculus
Total Credits of the Course	2	Hours per Week	4 hours
Note: This course is same as US04MIMTH08. The students opting for this course shall not be offered US04MIMTH08.			

Course Objectives:	 To develop problem solving skills of students through interactive teaching and supervised practice To teach students various methods of solving and applying results of advanced Calculus.
	• Develop skills required to solve problems in Physics and Engineering.

Sr. No.	List of Practicals
1.	Fundamentals of domain and range of functions of two variables
2.	Graphical representation of functions of two variables
3.	Double integrals using Cartesian and polar co-ordinates system.
4.	Change of order of integration of double integrals.
5.	Application of double integrals to evaluate area.
6.	Application of triple integrals
7.	Gradient of a scalar function, directional derivatives, Tangent plane & Normal line.
8.	Curl and divergence of a vector fields and its application.
9.	Line integrals
10.	Example based on Green's, Gauss's and Stoke's theorem

Course Outcomes: Upon completion of the course, the student will be able to		
1.	Obtain area and volume.	
2.	Solve problems in vector calculus	
3.	Apply results of advanced calculus to solve certain problems in science.	
Suggested References:		
Sr. No	References	
1.	E. Kreyszing, Advanced Engineering Mathematics, Fifth edition, New Age International (P) LTD, New Delhi, 1997.	
2.	R. K. Jain, S.R.K. Iyenger, Advanced Engineering Mathematics, Fifth Edition, Narosa publishing House, New Delhi, 2017.	
3.	B.S. Grewal, Higher Engineering Mathematics, 42th Edition, Khanna Publishers, Nai Sarak, Delhi, 2012.	
