

Course Code	US03MABIC01	Title of the Course	Biochemistry of Biomolecules 04	
Total Credits of the Course	04	Hours per Week		
Course	1. To develop basic u	understanding of hi	omolecules like lipids and nucleic acids	

1. To develop basic understanding of biomolecules like lipids and nucleic acids.
2. To learn about basic understanding of enzymes, substrate, active site of enzyme
3. To get aware about various classes of enzymes and mechanism of enzyme action.
4. To get familiar with applications of enzymes in industry, diagnostic and as a therapy.

Course Content				
Unit	Description	Weightage* (%)		
1.	 Carbohydrates Structure and importance of monosaccharide: Common monosaccharide (Triose, Tetrose, Pentose & Hexose sugars). Aldose & Ketose sugars Fischer & Haworth projection formulas Structure of Glucose: Pyranose and furanose structures Chiral Centre, Optical Isomerism, D& L isomers, Epimers, Anomers-Mutarotation Properties & Reactions of Monosaccharides:Osazone formation, action of acids and alkali on sugars. Uronic acid derivatives of sugars, amino sugars and sugar phosphates. Disaccharides and oligosaccharides: Reducing &NonReducing Disaccharides. Structure, Sources & Importance of disaccharides (Maltose, Sucrose and Lactose) as well as oligosaccharides: Starch, Glycogen, Cellulose, Hemi cellulose, Pectin and Heparin. Hyaluronic acid, Chondroitin Sulphate, Agar and Pectins 	25%		

2.	Nucleic Acid	
	 Introduction of nucelotides, nucleic acids (Types and structure in brief) Importance of nucleotides Organization of DNA in the cell. Denaturation & Renaturation of DNA strands, hyperchromicity, Melting temperature (Tm of DNA) and its significance. Structure and functions of Different types of RNA: Messenger RNA (m-RNA), Transfer RNA (t-RNA), Ribosomal RNA (rRNA), small nuclear RNA (sn-RNA) and heterogeneous, nuclear RNA (hn-RNA) Importance of 16S and 18S r-RNA in identification of species and their role in phylogenetic studies. Definition of a gene, organization of genes in viruses, bacteria, animals and plants. Fine structure of the Gene: Cistron, muton and recon Nucleosome structure and packaging of DNA into higher order structures, Genome Basic concepts of genetic information:Nucleic acids as genetic information carriers, experimental evidences e.g. bacterial genetic transformation: Avery experiment, Hershey experiment, Stanley experiment, Central dogma of molecular biology and its modification. 	25%

	Syllabus with effect from the Academic Year 2024-2025	
3.	Enzymes	
	 Definition, historical perspective, general characteristics, apoenzyme, holoenzyme, co-factors – coenzymes and metal ions, and prosthetic group Co-enzymes examples and functions Classification and units of enzymes: Based on IUB with examples. Unit of enzyme activity – definition of IU, enzyme turn over number, Specific activity. Properties of Enzyme: Catalytic activity of enzyme, enzyme specificity and regulation enzyme. Enzyme specificity Concept of active site and salient features of active site. Mechanism of enzyme action: Fischer's lock and key hypothesis, Koshland's induced fit hypothesis, Substrate strain theory 	25%
4.	 Applications of Enzymes Use of enzyme to determine the concentration of metabolites of clinical importance fluids a) Blood glucose b) Uric acid c) Cholesterol d) TG Marker enzymes in diagnostics (SGPT, SGOT, creatine kinase, alkaline and acid phosphatases) Enzyme therapy (Streptokinase), Cancer therapy Industrial applications of enzymes) (Application of enzyme in Alcohol beverages, Breadmaking, Cheese making, Sweeteness Clarification of beer's, Wines; Fruit juices & detergents) 	25%

Teaching-Learning	Direct Teaching through Chalk-Walk and Talk
Methodology	ICT enabled teaching
Methodology	5
	Question-Answer
	Class discussion led by teacher/students
	Case Studies
	Literature review
	Problem solving activities
	Debate
	Collaborative and Co-operative Learning
	Think Pair Share
	Jigsaw
	Inquiry Based Learning
	Panel Discussion
	Project Based Learning
	Flipped Classroom
	Blended Learning designs
	Concept Mapping

Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Cour	Course Outcomes: On the successful completion of the course, the students will be able to understand		
	By learning this course students will acquire knowledge of lipids and nucleic acids.		
	Students will expand their knowledge regarding types of fatty acids and their significance.		
	Students will gain a good understanding of types of nucleic acids, their chemical basis and significance.		
	Students will get information about enzymes and its types.		
	Students will achieve knowledge about use of enzymes in industry, therapy and as a diagnostic purpose.		

Suggested References:		
Sr. No.	References	
1.	Lehninger Principles of Biochemistry by David L. Nelson, Michael Cox Publisher: WH Freeman	
2.	Biochemistry by Donald Voet, Judith G. Voet Publisher: Wiley	
3.	Biochemistry – By U Satyanarayana and U Chakrapani Publishers: Elsevier	

 On-line resources to be used if available as reference material

 On-line Resources:

 https://onlinecourses.nptel.ac.in/noc22_cy06/preview

 https://onlinecourses.nptel.ac.in/noc21_bt19/preview

 https://vlab.amrita.edu/?sub=3&brch=63

https://vlab.amrita.edu/?sub=3&brch=64

https://biotech01.vlabs.ac.in/

https://www.nature.com/subjects/biochemistry

https://sbcihq.in/

https://iubmb.org/resources/biochemistry-education-movies/

https://www.chem.fsu.edu/chemlab/bch4053l/resources.html

https://onlinecourses.nptel.ac.in/noc22_cy06/preview

https://onlinecourses.nptel.ac.in/noc21_bt19/preview

https://sbcihq.in/

https://iubmb.org/resources/biochemistry-education-movies/

https://vlab.amrita.edu/?sub=3&brch=63

https://vlab.amrita.edu/?sub=3&brch=64

https://biotech01.vlabs.ac.in/

Course Code	US03MABIC02	Title of the Course	Essentials of Clinical Biochemistry-I
Total Credits of the Course	04	Hours per Week	04
Course Objectives:	cycle, etc. 2. To get familiar wit 3. Explain what is m	h basic blood cells heant by buffering. are added to an ac	tory system including structure of heart, cardiac of human body and their significance. The chemical reactions occurring when a weak queous solution. To get knowledge of acid base properties.

Course Content			
Unit	Description	Weightage* (%)	
1.	 CIRCULATORY SYSTEM: Components of circulatory system Functions of circulatory system Circulatory routes-systemic & pulmonary circulatory system Basic structure of human heart a) Pericardium b) Layers of heart wall c) Chambers of the heart d) Valves of the heart Cardiac cycle 	25%	
2.	 BLOOD CELLS Blood cells formation: Haematopoiesis Erythrocytes(RBC) :- a) Functions, b) physical characteristics/ Physiology, c) Erythropoiesis d) RBC life cycle (degradation of RBC) WBC:- functions in detail Platelets: functions, Platelet plug formation 	25%	

	Synubus with check from the frequence from 2024 2025	
3.	ACID- BASE BALANCE AND IMBALANCE	
	1) Definition of Acid, Base, Buffer & pH	
	2) Buffers, buffer capacity and factors affecting buffering capacity	
	3) Physiological Buffer System & its importance	
	a) Phosphate buffer system	
	b) Bicarbonate buffer	
	4) Importance of pH balance in our body	
	5) Acid base imbalance	25%
	a) Acidosis	
	b) Alkalosis	
	6) Titration curve and pka of weak acid	
	7) H-H equation & its example to find pH and pka	
4.	BIOPHYSICAL BIOCHEMISTRY:-	
	Colloid:-	
	1) Definition & Classification of Colloids	
	2) Properties of colloids (in short).	
	a) Tyndal effect	
	b) Dialysis	
	c) Brownian movement	
	d) Ageing	
	e) Coagulation	25%
	f) Electrical Properties	
	3) Biological significance of Colloids.	
	4) Definition & significance of following –	
	a) Viscosity	
	b) Surface tension	
	c) Osmosis, Reverse osmosis and its use in water purifiers	
	d) Diffusion	
	e) Donnan membrane equilibrium	
		-

Teaching-Learning Methodology	Direct Teaching through Chalk-Walk and Talk ICT enabled teaching Question-Answer Class discussion led by teacher/students Case Studies Literature review Problem solving activities Debate Collaborative and Co-operative Learning
	Jigsaw Inquiry Based Learning Panel Discussion Project Based Learning Flipped Classroom Blended Learning designs Concept Mapping

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cour	Course Outcomes: On the successful completion of the course, the students will be able to understand		
	circulatory system including structure of heart, cardiac cycle, etc.		
	To get familiar with basic blood cells of human body and their significance.		
	Explain what is meant by buffering. The chemical reactions occurring when a weak acid and its salt are added to an aqueous solution. To get knowledge of acid base imbalance.		
	To get aware of different biophysical properties		
	To get knowledge related to circulatory system including structure of heart, cardiac cycle, etc.		

Suggested References:		
Sr. No.	References	
1.	Lehninger Principles of Biochemistry by David L. Nelson, Michael Cox Publisher: WH Freeman	
2.	Biochemistry by Donald Voet, Judith G. Voet Publisher: Wiley	
3.	Biochemistry – By U Satyanarayana and U Chakrapani Publishers: Elsevier	
4.	Principles of Anatomy and Physiology- By Gerard J. Tortora, Bryan H. Derrickson Publishers: John Wiley & Sons, Inc.	
5.	Human Physiology By Dr C C Chatterjee Publishers: Medical Allied Agency	
6.	Molecular Biology of the Cell by Bruce Alberts et al, Publisher: Garland Science	
On-line reso	urces to be used if available as reference material	
On-line Reso	ources:	
https://onlinecourses.nptel.ac.in/noc22_cy06/preview		
https://onlinecourses.nptel.ac.in/noc21_bt19/preview		
https://vlab.amrita.edu/?sub=3&brch=63		
https://vlab.amrita.edu/?sub=3&brch=64		
https://biotech01.vlabs.ac.in/		
https://www.nature.com/subjects/biochemistry		

https://sbcihq.in/ https://iubmb.org/resources/biochemistry-education-movies/ https://www.chem.fsu.edu/chemlab/bch40531/resources.html https://onlinecourses.nptel.ac.in/noc22_cy06/preview https://onlinecourses.nptel.ac.in/noc21_bt19/preview https://sbcihq.in/ https://iubmb.org/resources/biochemistry-education-movies/ https://vlab.amrita.edu/?sub=3&brch=63 https://vlab.amrita.edu/?sub=3&brch=64 https://biotech01.vlabs.ac.in/

Major Biochemistry Practical

Course Code	US03MABIC03	Title of the Course	Biochemistry Practical
Total Credits of the Course	04	Hours per Week	08

Course Objectives:	 To develop understanding good laboratory practices in a biochemistry laboratory To learn how to work in a laboratory responsibly and safely. To understand the use of equipment for doing experiments and handling glassware. To study how to make standards and standard biochemical reagents. To gain the knowledge of identification of various biomolecules like carbohydrates
	 and their quantitative estimation. 6. To have understanding of estimation of enzymes. 7. To have understanding of hemoglobin estimation, WBC, RBC and differential count. 8. To have understanding of Iron estimation. 9. To study how to make different buffer solutions.

Sr No	Name of the Practical
	SECTION-I
1.	Laboratory safety rules and regulations
2.	Estimation of salivary amylase.
3.	Estimation of glucose by GOD-POD method
4.	Determination of Iodine value of oils.
5.	Estimation of reducing sugar by Cole's method.
6.	Osazone formation
7.	Qualitative analysis of Carbohydrate (Lactose)
8.	Qualitative analysis of Carbohydrate (Sucrose)
9.	Qualitative analysis of Carbohydrate (Maltose)

SECTION-II		
1.	 Preparation of biochemical reagents Molar solution with examples Normal solution with examples 	
2.	Estimation of hemoglobin by Drabkin's method	
3.	WBC count by hemocytometer	
4.	RBC count hemocytometer	
5.	Estimation of Iron by Wong's method.	
6.	Differential leukocyte count.	
7.	Preparation of buffer solutions.	
8.	Visit to diagnostic laboratory and blood bank	

Teaching-Learning Methodology	Direct Teaching through Chalk-Walk and Talk ICT enabled teaching Question-Answer Class discussion led by teacher/students Case Studies Literature review Problem solving activities Debate Collaborative and Co-operative Learning Think Pair Share Jigsaw Inquiry Based Learning Panel Discussion Project Based Learning Flipped Classroom Blended Learning designs Concert Manping
	Concept Mapping

Course Outcomes: On the successful completion of the course, the students will be able to understand

By learning this course students will acquire knowledge of lab safety rules and regulations

Students will gain a good understanding of preparation of various reagents and lab instruments.

Students will learn about qualitative analysis of carbohydrates and measuring the concentration of biomolecules.

Students will understand the estimation of enzymes

Students will able to determine the blood glucose concentration by enzymatic method.

Students will earn hemoglobin estimation, WBC, RBC and differential count.

Students will have understanding of Iron estimation.

Suggested References:		
Sr. No.	References	
1.	Standard Methods of Biochemical Analysis S.K. Thimmaiah Publishers: Kalyani	
2.	Principles & Techniques of Practical Biochemistry – Wilson, Walker- Cambridge Univ. Press.	
3.	An Introduction to Practical Biochemistry by David T. Plummer	
4.	Textbook of Medical Laboratory Technology by Praful B. Godkar; Darshan P. Godkar	

 On-line resources to be used if available as reference material

 On-line Resources:

 https://vlab.amrita.edu/?sub=3&brch=63

 https://vlab.amrita.edu/?sub=3&brch=64

 https://biotech01.vlabs.ac.in/

 https://biotech01.vlabs.ac.in/

 https://sbcihq.in/

 https://sbcihq.in/

 https://iubmb.org/resources/biochemistry-education-movies/

 https://www.chem.fsu.edu/chemlab/bch40531/resources.html

B. Sc. Biochemistry Semester-3

Interdisciplinary/Multidisciplinary Paper

Course Code	US03IDBIC01/US03MDBIC01	Title of the Course	Fundamentals of Biomolecules
Total Credits of the Course	02	Hours per Week	02

Course Objectives:	1. To learn the fundamentals of molecules that deals with life such as nucleic acids and Lipids.		
	 2. To develop understanding of structure, types and significance of nucleic acids. 3. To learn classification of various types of lipids and their biological role. 4. To study the genetic basis of life by having knowledge of nucleic acids such as DNA and RNA. 		

	Course Content	
Unit	Description	Weightage* (%)
1.	 BIOCHEMISTRY OF LIPIDS Definition and functions of lipids Classification of lipids: Simple, Compound, Derived, miscellaneous and natural lipids. Fatty acids: Saturated and Unsaturated, Essential and non-essential fatty acids Nomenclature of fatty acids Dietary sources and functions of fatty acids 	50%
2.	 NUCLEOTIDES AND NUCLEIC ACIDS Purine and Pyrimidine bases, Structure and nomenclature of nucleosides and nucleotides, , Ribose and deoxyribose sugars, Phosphodiester bond Chargaff's Rule Structure of DNA double helix (Watson and crick model) Structure and functions of Different types of RNA: Messenger RNA (m-RNA) Transfer RNA (t-RNA) Ribosomal RNA (r-RNA) Functions of nucleic acids 	50%

Teaching-Learning Methodology	Direct Teaching through Chalk-Walk and Talk ICT enabled teaching Question-Answer Class discussion led by teacher/students Case Studies Literature review Problem solving activities Debate Collaborative and Co-operative Learning Think Pair Share Jigsaw Inquiry Based Learning
	Problem solving activities
	Debate
	Collaborative and Co-operative Learning
	Think Pair Share
	Jigsaw
	Inquiry Based Learning
	Panel Discussion
	Project Based Learning
	Flipped Classroom
	Blended Learning designs
	Concept Mapping

	Evaluation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

 Course Outcomes: On the successful completion of the course, the students will be able to understand
 By learning this course students will acquire knowledge of functions of lipids and nucleic acids.

 Students will gain a good understanding of types of lipids and nucleic acids, their chemical basis and structure.

Suggested References:	
Sr. No.	References
1.	Lehninger Principles of Biochemistry by David L. Nelson, Michael Cox Publisher: WH Freeman
2.	Biochemistry by Donald Voet, Judith G. Voet Publisher: Wiley
3.	Biochemistry – By U Satyanarayana and U Chakrapani Publishers: Elsevier

On-line resources to be used if available as reference material
On-line Resources:
https://onlinecourses.nptel.ac.in/noc22_cy06/preview
https://onlinecourses.nptel.ac.in/noc21_bt19/preview
https://vlab.amrita.edu/?sub=3&brch=63
https://vlab.amrita.edu/?sub=3&brch=64
https://biotech01.vlabs.ac.in/
https://www.nature.com/subjects/biochemistry
https://sbcihq.in/
https://iubmb.org/resources/biochemistry-education-movies/
https://www.chem.fsu.edu/chemlab/bch4053l/resources.html

Course Code	US03IDBIC02/US03MDBIC02	Title of the Course	Biochemistry Practical
Total Credits of	02	Hours per Week	04
the Course			

Course Objectives:	 To study identification of lipids. To have understanding of quantification of lipids and nucleic acids.
	3. To learn the determination of acid value and saponification value.4. To gain knowledge of normality of acids and bases.

Sr No	Name of the Practical
1.	Qualitative analysis of lipid
2.	To find out free fatty acid value of an oil
3.	To find out saponification value of an oil
4.	Estimation of DNA by DPA method
5.	Estimation of RNA by orcinol method
6.	Normality of Acid
7.	Normality of Base

Case Studies Literature review Problem solving activities Debate

Blended Learning designs Concept Mapping

Course Outcomes: On the successful completion of the course, the students will be able to understand

By learning this course students will acquire knowledge of quantitative estimation of lipids and nucleic acids

Students will gain a good understanding ofacid value and saponification value of lipids

Students will learn about qualitative analysis of lipids.

	Suggested References:
Sr. No.	References
1.	Standard Methods of Biochemical Analysis S.K. Thimmaiah Publishers: Kalyani
2.	Principles & Techniques of Practical Biochemistry – Wilson, Walker- Cambridge Univ. Press.
3.	An Introduction to Practical Biochemistry by David T. Plummer

On-line resources to be used if available as reference material
On-line Resources:
https://vlab.amrita.edu/?sub=3&brch=63
https://vlab.amrita.edu/?sub=3&brch=64
https://biotech01.vlabs.ac.in/
https://www.nature.com/subjects/biochemistry
https://sbcihq.in/
https://iubmb.org/resources/biochemistry-education-movies/
https://www.chem.fsu.edu/chemlab/bch4053l/resources.html

Skill Enhancement Course (SEC)

Course Code	US03SEBIC01	Title of the Course	Tools and Techniques in Biochemistry-III
Total Credits of the Course	02	Hours per Week	02
Course Objectives:	1) Students will gain a good understanding of common laboratory instruments available in a biochemistry laboratory.		
	2) By learning this course students will acquire knowledge of Colorimeter and Spectrophotometer		
	3) To get knowledg	e of centrifuge tech	nniques

	Course Content		
Unit	Description	Weightage* (%)	
1.	 Centrifugation Techniques Introduction of Centrifuge General Principle and derivation for G and RCF Types of centrifuge Ultracentrifuge analytical preparative centrifuge; Types of rotors: vertical, fixed angle, swinging bucket Importance of centrifuge 	50%	
2.	 Colorimeter and Spectrophotometer Beer Lambert's law and derivation Definition for Transmittance, Absorbance, Optical density, λ max Principle, flow diagram, working & applications of Colorimeters UV-Visible spectrometers 	50%	

Teaching-Learning Methodology	Direct Teaching through Chalk-Walk and Talk ICT enabled teaching Question-Answer Class discussion led by teacher/students Case Studies Literature review Problem solving activities Debate Collaborative and Co-operative Learning Think Pair Share Jigsaw Inquiry Based Learning
	Literature review
	Problem solving activities
	Debate
	Collaborative and Co-operative Learning
	Think Pair Share
	Jigsaw
	Inquiry Based Learning
	Panel Discussion
	Project Based Learning
	Flipped Classroom
	Blended Learning designs
	Concept Mapping

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	25%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	25%
3.	University Examination	50%

 Course Outcomes: On the successful completion of the course, the students will be able to understand

 By learning this course students will acquire knowledge of Colorimeter and Spectrophotometer

 Students will gain a good understanding of common laboratory instruments available in a biochemistry laboratory.

Suggested References:		
Sr. No.	References	
1.	Principles and techniques of biochemistry & molecular biology. Wilson and Walker. Andreas Hofmann and Samuel clokie	
2.	Principles & Techniques of Practical Biochemistry – Wilson, Walker- Cambridge Univ. Press.	
3.	Biophysical chemistry- Principles and techniques- Upadhyay, Upadyay and Nath Himalaya Publication house Mumbai.	

On-line resources to be used if available as reference material
On-line Resources:
https://onlinecourses.nptel.ac.in/noc22_cy06/preview_
https://onlinecourses.nptel.ac.in/noc21_bt19/preview
https://vlab.amrita.edu/?sub=3&brch=63
https://vlab.amrita.edu/?sub=3&brch=64
https://biotech01.vlabs.ac.in/
https://www.nature.com/subjects/biochemistry
https://sbcihq.in/
https://iubmb.org/resources/biochemistry-education-movies/
https://www.chem.fsu.edu/chemlab/bch4053l/resources.html
