

Bachelor of Science B.Sc. Physics (Semester- IV)

Course Code	US04MAPHY01	Title of the Course	Electromagnetic Theory and Spectroscopy
Total Credits of the Course	04	Hours per Week	04

Course Objectives:	 The students will be benefited by studying: 1. concept of Gradient, Divergence and Curl and different coordinate systems 2. concept of charge its field & it's energy density and Poisson's and Laplace's equation. 3. magnetic field and its force, motion of charged particle in magnetic field, Biot-Savart law and its application to find the magnetic flux & div & curl of B 4. concept of magnetic material
	 5. investigation and production of spectra and various types of spectra and different Quantum number. 6. the effects of magnetic and electric field on the spectrum of an atom i.e., Zeeman effects, Paschen-Back effects and Stark effects. 7. Production, measurement and diffraction of X - ray radiation and Bragg's Law. The comparison of optical and X-Ray spectra.

	Course Content	
Unit	Description	Weightage* (%)
1	Differential Calculus:Brief introduction to Gradient, Divergence and Curl, Line, Surface and Volume integrals, Spherical and Cylindrical Coordinate SystemsElectrostatics:Electric field: Coulomb's Law, The Electric field, Continuous charge distribution, Divergence and curl of Electrostatic fields: Field lines, Flux and Gauss's law, The Divergence of E, Applications of Gauss's law, The 	25 %
	Work and Energy in Electrostatics: The work done to move a charge, The energy of a point charge distribution, The energy of a continuous charge distribution [Introduction to Electrodynamics by David J Griffiths, (4 th Edition) Prentice-Hall of India Private Ltd. Vector Analysis: 2.2, 2.4, 2.5, 3.1, 4.1, 4.2 Electrostatics: 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 4.3]	
2	Magnetostatics: The Lorentz Force Law: Magnetic fields, Magnetic forces, Cyclotron motion, Cycloid motion, Currents The Biot-Savart law: Steady currents, The Magnetic field of a steady current and its applications	

SARDAR PATEL UNIVERSITY

٠

Vallabh Vidyanagar, Gujarat Re-accredited with 'A' Grade by NAAC (CGPA 3.11) Syllabus with effect from the Academic Year

	The Divergence and Curl of B: Straight-Line currents, The Divergence and Curl of B, Ampere's law and its applications, Comparison of Magnetostatics and Electrostatics Magnetic Vector Potential: The Vector potential Magnetization: Diamagnets, Paramagnets, Ferromagnets, Torques and forces on magnetic dipoles, Effect of a magnetic field on atomic orbits, Magnetization [Introduction to Electrodynamics by David J Griffiths, (4 th Edition) Prentice-Hall of India Private Ltd, Magnetostatics: 1.1, 1.2, 1.3, 2.1, 2.2, 3.1, 3.2, 3.3, 3.4, 4.1 Magnetization: 1.1, 1.2, 1.3, 1.4]	25 %
3	Atomic Spectra: Investigation of Spectra, Production of Spectra, Types of Spectra, Wave Number, Shortcomings of Bohr theory, Criticism and limitations of old quantum mechanical models, The Spinning Electron, Space Quantization, Quantum Numbers and their Physical Interpretation, Quantum numbers for complete atoms, Fine structure of Hydrogen lines, Spectral terms and their notations, Positronium, Mesonic atoms, L-S Coupling, j-j Coupling, Experimental study of Zeeman Effect, Classical Interpretation of Normal Zeeman Effect, Vector model and normal Zeeman effect, Paschen-Back effect, Stark Effect. [Elements of Spectroscopy by S L Gupta, V Kumar, R C Sharma (31 st Edition) Section I: Atomic Spectra: 1.1, 1.2, 1.3, 1.4, 1.14, 2.7, 3.1, 3.2, 3.3, 3.1.1, 3.8, 3.9, 3.10, 3.11, 6.13, 9.1, 9.2, 9.3, 9.4, 9.7, 9.14]	25 %
4	X-ray Spectra: Production of X-rays, Origin of X-Radiations according to electromagnetic theory, X-rays: Light and Electromagnetic Spectrum, Diffraction of X-Radiations, Bragg's law, Laue spots, Bragg's spectrometer, Continuous X-ray spectrum, Characteristic Emission Spectrum, Characteristic Absorption Spectrum, A Close Survey of Emission Spectrum, Explanation of Emission and Absorption Spectra, Energy levels, Comparison of Optical and X-ray Spectra, Moseley's Law, Application of Moseley's law. [Elements of Spectroscopy by S L Gupta, V Kumar, R C Sharma (31 st Edition) Section II: X-Rays and X-Ray Spectra: 1.1, 1.2, 1.3, 1.6, 1.7, 1.8, 1.9, 1.12, 1.13A, 1.13B, 1.14, 1.15, 1.16, 1.17, 1.18]	25 %

Teaching-	Direct Teaching through Chalk-Walk and Talk	
Learning	ICT enabled teaching, Question-Answer	
Methodology	Class discussion led by teacher/students	
	Case Studies, Literature review	
	Problem solving activities	
	Debate	
	Collaborative and Co-operative Learning	
	Think Pair Share	
	Jigsaw	
	Inquiry Based Learning	
	Panel Discussion Project	
	Based Learning Flipped	
	Classroom	
	Blended Learning designs Concept Mapping	

Evaluatio	n Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Continuous Assessment in the form of Internal Written Test, Quizzes, Assignments, Active learning, Viva-voce, Seminars, Attendance (As per NEP Guideline)	50%
2.	University Examination	50%

Cours	Course Outcomes: Having completed this course, the learner will be able to		
1. Understand the different type of Electric field, Electric potential theory.			
2.	Understand the Magnetostatics and Magnetization theory.		
3.	Understand about Production and types of Atomic spectra and effects of magnetic and electric field on it.		
4. Understand the various parameters related with X-Ray Spectra.			

Referen	Reference Books	
Sr. No	References	
1.	Introduction to Electrodynamics David J Griffiths, (4 th Edition) Prentice-Hall of India Private Ltd.	
2.	Elements of Spectroscopy S L Gupta, V Kumar, R C Sharma (31 st Edition) Pragati Prakashan	
3.	Electricity and Magnetism A S Mahajan and A A Rangwala, Tata McGraw Hill Publishing Company Ltd	
4.	Molecular structure and Spectroscopy G Aruldhas, Prentice-Hall of India Private Limited	

On-line Resources https://andrealommen.github.io/PHY309/lectures/divcurlE https://opentextbc.ca/calculusv3openstax/chapter/cylindrical-and-spherical-coordinates/ https://www.accessengineeringlibrary.com/content/book/9781260120974/chapter/chapter6# https://en.wikipedia.org/wiki/Magnetostatics#:~:text=Magnetostatics%20is%20the%20study%20of.w here%20the%20charges%20are%20stationary. https://en.wikipedia.org/wiki/Magnetization https://thefactfactor.com/facts/pure_science/physics/ferromagnetic/4702/ https://www.youtube.com/watch?v=FLQXW6G9P8I https://www.youtube.com/watch?v=wsCMXfQWnyM https://en.wikipedia.org/wiki/Zeeman effect https://www.youtube.com/watch?v=vSIVDEV1v78 https://www.radiologymasterclass.co.uk/tutorials/physics/x-ray physics production

·

Bachelor of Science B.Sc. Physics (Semester-IV)

Course Code	US04MAPHY02	Title of the Course	Classical, Quantum and Solid-State Physics
Total Credits of the Course	04	Hours per Week	04

Course	This will be helping students to learn:
Objectives	1. the fundamentals of inverse square law – forces and motions.
	2. the concepts of Quantum Mechanics based on
	Schrödinger wave equation formulation.
	3. basic concepts of crystallography and crystal analysis using X- ray
	diffraction.
	4. inter atomic forces responsible for bonding in Solids.

	Course Content		
Unit	Description	Weightage* (%)	
1	Inverse square law field, potential and Motion in a central force field: Inverse Square Law – Field and Potential: Introduction, Law of gravitational and electrostatic forces, Gravitational and electrostatic fields and potentials, Lines of force and equipotential surfaces, Field equations Motion in a central Force Field: Equivalent one body problem, Motion in a central force field, General features of the motion, Motion in an inverse square law force field, Equation of orbit, Kepler's laws of planetary motion. [Introduction to Classical Mechanics by R. G. Takwale and P. S. Puranik: 4.1, 4.2, 4.3, 4.7, 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6]	25 %	
2	Formulation of Schrödinger Equation: Towards Quantum Mechanics: De Broglie's Hypothesis, The motion of a free wave packet: Classical approximation and uncertainty principle. The Schrödinger Equation: A free particle in one dimension, Generalization to three dimensions, The operator correspondence and the Schrödinger equation for a particle subject to forces. Physical Interpretation and Condition on ψ : Normalization and probability interpretation, Non-normalizable wave functions and box normalization, Conservation of probability, Expectation value and Ehrenfest's theorem, Admissibility conditions on the wave function. A Text Book of Quantum Mechanics by P. M. Mathews and K. Venkatesan (2 nd Edition): 1.13, 1.14, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8.]	25 %	
3	Interatomic Forces and Bonding in Solids: Interatomic Forces: Introduction, Force between atoms, Cohesion of atoms and cohesive energy, Calculation of cohesive energy. Bonding in Solids: Bonding in solids, Ionic bonding, Bond energy of NaCl molecule, Calculation of lattice energy of ionic crystals, Calculation		

•

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat Re-accredited with 'A' Grade by NAAC (CGPA 3.11) Syllabus with effect from the Academic Year 2024-2025

ţ

	Synabus with check from the Academic Teal 2027-2025	
	of Madelung constant of ionic crystals, Calculation of repulsive exponent from compressibility data, The Born-Haber cycle, Properties of ionic solids, Examples of ionic solids, Covalent bond, Saturation in covalent bonds, Directional nature of covalent bond, Hybridization, Properties of covalent compounds, Metallic bond, Properties of metallic crystals, Intermolecular bonds, Dispersion bonds, Dipole bonds, Hydrogen bonds [Solid State Physics by S. O. Pillai (9 th Edition): Chapter-3, I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, XIV, XVII, XVII, XIX, XX, XXI, XXII, XXIII, XXIV]	25 %
4	Crystal Physics: Introduction, Lattice points and space lattice, The basics and crystal structure, Unit Cells and lattice parameters, Unit Cell versus Primitive Cell, Crystal systems, Crystal symmetry (symmetry elements in crystals), The twenty three symmetry elements in a cubic crystal, Combination of symmetry elements, Rotation-inversion axis, Translation symmetry elements, Space groups, The Bravais space lattices, Metallic crystal structures (sc, bcc, fcc, hcp), Relation between the density of crystal material and lattice constant in a cubic lattice, Other cubic structures, Direction planes and Miller Indices, Important features of Miller indices of crystal planes, Important planes and directions in a cubic crystals, Separation between lattice planes in cubic crystal. [Solid State Physics by S. O. Pillai (9 th Edition): Chapter-4, I, II, III, IV, V, VI, VII, VIII, X, XI, XII, XIII, XIV, XV, XVI, XVI	25 %

Teaching- Learning	Direct Teaching – Chalk & Duster technique Interrogative sessions
Methodology	ICT enabled teaching Problem solving Seminar
	Learning through experiment and models Educational Tours

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Continuous Assessment in the form of Internal Written Test, Quizzes, Assignments, Active learning, Viva-voce, Seminars, Attendance (As per NEP Guideline)	50%
2.	University Examination	50%

Course	Course Outcomes: Having completed this course, the learner will be able to		
1.	Understand the concepts of Gravitational & Electrostatic fields and potential. Get the knowledge of inverse square law in terms of motion of planetary objects.		
2.	Familiar with the basic concepts of Quantum mechanics and formulation of Schrödinger equation.		
3.	Understand the fundamental concepts and terms in crystallography.		
4.	Accustomed with the basics of inter atomic forces and bonding in solids.		

Referen	Reference Books		
Sr. No	References		
1.	Introduction to Classical Mechanics		
	R. G. Takwale and P. S. Puranik		
	Tata McGraw Hill Publishing Co. Ltd., New Delhi.		
2.	Atomic Physics		
	J. B. Rajam (Reprint 2002)		
	S. Chand & Co. Ltd.		
3.	A Text Book of Quantum Mechanics		
	P. M. Mathews and K. Venkatesan (2 nd Edition)		
	Tata McGraw Hill Publishing Co. Ltd., New Delhi.		
4.	Solid State Physics		
	S. O. Pillai (9 th Edition)		
	New Age International Publisher		

On-line	Resources:	

https://www.wizig.com/tutorials/classical-mechanics

https://en.wikipedia.org/wiki/Quantum_mechanics#:~:text=Quantum%20mechanics%20is%2 0a%20fundamental,technology%2C%20and%20quantum%20information%20science.

https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics

https://en.wikipedia.org/wiki/X-ray crystallography

https://www.slideshare.net/yayavaram/crystal-structure-xray-diffraction

http://web.eng.fiu.edu/wangc/EGN3365-2b.pdf

•

Bachelor of Science B.Sc. Physics (Semester- IV)

Course Code	US04MAPHY03	Title of the Course	Physics Practical
Total Credits of the Course	04	Hours per Week	08

Course Objectives	 The course aims at developing the following abilities in the learner: acquire knowledge and develop understanding of concepts, fundamental laws, principles and processes in the area of physics so that relationship between cause and effects of physical phenomenon can be understood; Experimental skills (like taking observations, manipulation of equipment) and communicative skills such as reporting of observations and experimental result.
	3. problems solving ability e.g., analyzing a situation or data and ensure the justification of results.
	4. Scientific temper of mind by making judgment on verified facts and not opinions, by showing willingness to accept new ideas and discoveries.

Course Content		
Description	Weightage*	
	(%)	
Section A		
1. Determination of 'g' by Kater's pendulum (variable distance)		
2. Characteristics of FET		
3. Study of a Hartley Oscillator		
4. Study of a Colpitts Oscillator		
5. Frequency Response of RC Coupled amplituer (with negative feedback)	50%	
6. Inductance L by Anderson's Bridge		
7. Study of L-C-R parallel resonance circuit		
8. Hybrid parameters of a BJT (CE configuration)		
9. Verification of Stefan's law		
10. Numerical Integration		
Section B		
1. Miller Indices using X-Ray diffraction pattern		
2. de-Broglie Relation using electron diffraction pattern		
3. Wave length of a monochromatic light ' λ ' using double slit Method		
4. Study of a Thermocouple	500/	
5. Wave length of a monochromatic light ' λ ' using Lloyd's mirror	50%	
6. Cauchy's Constants		
7. Absorption co-efficient of liquid using photocell		
8. Identification of chemical elements using absorption spectra		
9. To study double refraction in Calcite OR Quartz prism		
10. Error analysis		

Note:

- [1] To provide flexibility, up to the maximum of **20%** of total experiments can be replaced/added by college to this list prepared by the Board of Studies.
- [2] A minimum of 80% experiments must be performed in practical course.
- [3] To maintain uniformity in assessment of practical examination the below mentioned marks distribution pattern is followed:

Sr. No.	Work done	Weightage as per 100 Marks
1.	Writing Principle / Statement/ Formula with explanation of symbols	16 Marks
2.	Diagram/Circuit Diagram / Expected Graph	16 Marks
3.	Setting up of the experiment + Tabular Columns + taking readings	28 Marks
4.	Calculations (explicitly shown) + Graph	20 Marks
5.	Accuracy of results with units	08 Marks
6.	Round the year Performance/ Records (to be valued at the time of practical Examination through oral viva)	12 Marks
		100 Marks

Note:

- Weightage of both the sections A and B are 50%. Students are required to obtain 40% of total marks.
- Wherever explicit setting up of experiments does not exist like in the case of spectral charts or pre-acquired data is involved, the marks for setting up of experiment may be provided for additional graphs and formulae.

Teaching- Learning	Direct Teaching through Demonstration, Chalk Walk and Talk
Methodology	ICT enabled teaching
	Question-Answer
	Group discussion led by teacher/students
	Problem solving activities
	Collaborative and Co-operative
	Learning Think Pair Share
	Jigsaw
	Inquiry Based Learning
	Panel Discussion
	Viva voce
	Blended Learning designs

Evalua	tion Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Continuous Assessment in the form of Practical Examination, Quizzes, Assignments, Active learning, Viva-voce, Seminars, Attendance (As per NEP Guideline)	50%
2.	University Examination	50%

Course	Outcomes: On the successful completion of the course, the students will be able to
1.	Apply the various procedures and techniques for the experiments.
2.	Use the different measuring devices and meters to record the data with precision
3.	Apply the mathematical concepts/equations to obtain quantitative results
4.	Develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the results.

Reference Books		
Sr. No.	References	
1.	Advanced Practical Physics for students	
	B. L. Worsnop and H. T. Flint	
	Methuen and Co, Ltd., London.	
2.	B. Sc. Practical Physics	
	C. L. Arora	
	S. Chand & Co. Ltd., New Delhi.	
3.	Advanced Practical Physics	
	M. S. Chauhan and S. P. Singh	
	Pragati Prakashan, Meerut.	
4.	Advanced Practical Physics	
	S. L. Gupta and V. Kumar	
	Pragati Prakashan, Meerut.	

On-line resources to be used if available as reference material On-line Resources: https://www.futurelearn.com/courses/teaching-practical-science-physics

Bachelor of Science B.Sc. Physics (Semester- IV)

US04MIPHY01	Title of the Course	Physics of Solids
02	Hours per Week	02
	US04MIPHY01 02	US04MIPHY01Title of the Course02Hours per Week

Course	This will be helping students to learn:
Objectives	1. basic concepts of crystallography and crystal analysis using X-ray diffraction.
	2. inter atomic forces responsible for bonding in Solids.

	Course Content		
Unit	Description	Weightage* (%)	
	Interatomic Forces and Bonding in Solids: Interatomic Forces: Introduction, Force between atoms, Cohesion of atoms and cohesive energy, Calculation of cohesive energy. Bonding in Solids: Bonding in solids, Ionic bonding, Bond energy of NaCl molecule, Calculation of lattice energy of ionic crystals, Calculation of Madelung constant of ionic crystals, Calculation of repulsive exponent from compressibility data, The Born-Haber cycle, Properties of ionic solids, Examples of ionic solids, Covalent bond, Saturation in covalent bonds, Directional nature of covalent bond, Hybridization, Properties of covalent compounds, Metallic bond, Properties of metallic crystals, Intermolecular bonds, Dispersion bonds, Dipole bonds, Hydrogen bonds [Solid State Physics by S. O. Pillai (9 th Edition): Chapter-3, I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, XIV, XVII, XVII, XIX, XX, XXI, XXII, XXIII, XXIV]	50%	
2	Crystal Physics: Introduction, Lattice points and space lattice, The basics and crystal structure, Unit Cells and lattice parameters, Unit Cell versus Primitive Cell, Crystal systems, Crystal symmetry (symmetry elements in crystals), The twenty three symmetry elements in a cubic crystal, Combination of symmetry elements, Rotation-inversion axis, Translation symmetry elements, Space groups, The Bravais space lattices, Metallic crystal structures (sc, bcc, fcc, hcp), Relation between the density of crystal material and lattice constant in a cubic lattice, Other cubic structures, Direction planes and Miller Indices, Important features of Miller indices of crystal planes, Important planes and directions in a cubic crystal. [Solid State Physics by S. O. Pillai (9 th Edition): Chapter-4, I, II, III, IV, V, VI, VII, VIII, XIX, XX, VVIII, XVIII, XIX, XX, VVIII	50%	

Teaching- Learning Methodology	Direct Teaching – Chalk & Duster technique Interrogative sessions Teaching using Audio-Visual aids ICT enabled teaching Problem solving Seminar talks Learning through experiment and models Educational Tours	
--------------------------------------	---	--

Sr.	Details of the Evaluation	Weightage
140.		
Ι.	Internal Continuous Assessment in the form of Internal Written Test, Quizzes, Assignments, Active learning, Viva-voce, Seminars, Attendance (As per NEP Guideline)	50%
2.	University Examination	50%

Cours	e Outcomes: Having completed this course, the learner will be able to
1.	Understand the concepts of Gravitational & Electrostatic fields and potential. Get the knowledge of inverse square law in terms of motion of planetary objects.
2.	Familiar with the basic concepts of Quantum mechanics and formulation of Schrödinger equation.
3.	Understand the fundamental concepts and terms in crystallography.
4.	Accustomed with the basics of inter atomic forces and bonding in solids.

Referen	ce Books	
Sr. No	References	
1.	Solid State Physics S. O. Pillai (9 th Edition) New Age International Publisher	
2.	Solid State Physics M. A. Wahab (2 nd Edition) Narosa Publishing House	

On-line Resources:

https://en.wikipedia.org/wiki/X-ray_crystallography https://www.slideshare.net/yayavaram/crystal-structure-xray-diffraction

http://web.eng.fiu.edu/wangc/EGN3365-2b.pdf

SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar, Gujarat

Re-accredited with 'A' Grade by NAAC (CGPA 3.11) Syllabus with effect from the Academic Year 2024-2025

Bachelor of Science

B.Sc. Physics (Semester- IV)

Course Code	US04MIPHY02	Title of the Course	Physics Practical
Total Credits of the Course	02	Hours per Week	04

Course	The course aims at developing the following abilities in the learner:
Objectives	1. acquire knowledge and develop understanding of concepts, fundamental laws,
	principles and processes in the area of physics so that relationship between
	cause and effects of physical phenomenon can be understood;
	2. Experimental skills (like taking observations, manipulation of equipment) and
	communicative skills such as reporting of observations and experimental
	result. The problems solving ability, e.g., analyzing a situation or data and
	ensure the justification of results.
	3. Scientific temper of mind by making judgment on verified facts and not
	opinions, by showing willingness to accept new ideas and discoveries.

Course Content	
Description	Weightage* (%)
1. Determination of 'g' by Kater's pendulum (variable distance)	
2. Characteristics of FET	
3. Study of a Hartley/Colpitts Oscillator	
4. Study of L-C-R series/parallel resonance circuit	
5. Verification of Stefan's law	1000/
6. Numerical Integration	100%
7. Miller Indices using X-Ray diffraction pattern	
8 de-Broglie Relation using electron diffraction pattern	
9. Cauchy's Constants	
10. Absorption co-efficient of liquid using photocell	
11. Error analysis	

Note:

- [1] To provide flexibility, up to the maximum of **20%** of total experiments can be replaced/added by college to this list prepared by the Board of Studies.
- [2] A minimum of 80% experiments must be performed in practical course.
- [3] To maintain uniformity in assessment of practical examination the below mentioned marks distribution pattern is followed:

Sr. No.	Work done	Weightage as per 100 Marks
1.	Writing Principle / Statement/ Formula with explanation of symbols and units	08 Marks
2.	Diagram/Circuit Diagram / Expected Graph	08 Marks
3.	Setting up of the experiment + Tabular Columns + taking readings	14 Marks
4.	Calculations (explicitly shown) + Graph	10 Marks
5.	Accuracy of results with units	04 Marks
6.	Round the year Performance/ Records (to be valued at the time of practical Examination through oral viva)	06 Marks
		50 Marks

Note:

• Wherever explicit setting up of experiments does not exist like in the case of spectral charts or pre-acquired data is involved, the marks for setting up of experiment may be provided for additional graphs and formulae.

ſ	Teaching- Learning	Direct Teaching through Demonstration, Chalk-Walk and Talk	
	Methodology	ICT enabled teaching, Question-Answer	
		Group discussion led by teacher/students	
		Problem solving activities	
		Collaborative and Co-operative Learning	
		Think Pair Share	
1		Jigsaw	
		Inquiry Based Learning Panel Discussion	
ł		Viva voce	
		Blended Learning designs	

Sr.	Details of the Evaluation	Weightage
No.		
1.	Internal Continuous Assessment in the form of Practical Examination, Quizzes, Assignments, Active learning, Viva-voce, Seminars, Attendance (As per NEP Guideline)	50%
2.	University Examination	50%

Cours	e Outcomes: On the successful completion of the course, the students will be able to	
1.	Apply the various procedures and techniques for the experiments.	
2.	Use the different measuring devices and meters to record the data with precision]
3.	Apply the mathematical concepts/equations to obtain quantitative results	
4.	4. Develop basic communication skills through working in groups in performing thelaboratory experiments and by interpreting the results.	

Reference Books Sr. No. References 1. Advanced Practical Physics for students B. L. Worsnop and H. T. Flint, Methuen and Co, Ltd., London. 2. B. Sc. Practical Physics C. L. Arora, S. Chand & Co. Ltd., New Delhi. 3. Advanced Practical Physics M. S. Chauhan and S. P. Singh, Pragati Prakashan, Meerut. 4. Advanced Practical Physics S. L. Gupta and V. Kumar, Pragati Prakashan, Meerut.

On-line resources to be used if available as reference material On-line Resources: https://www.futurelearn.com/courses/teaching-practical-science-physics

Bachelor of Science B.Sc. Physics (Semester -IV)

Course Code	US04SEPHY01	Title of the Course	Transducers and Sensors
Total Credits of the Course	02	Hours per Week	02

Course	1. To familiarize and acquaint the students with different types of analog			
Objectives	transducers used for measurements of temperature at different levels.			
	2. To familiarize the students about characteristics of sound and construction of			
	different types of microphones.			
	3. To make the students aware of different types of optical fibre sensors used for			
	measurements of various physiological parameters like blood pressure, blood			
	flow rate, oxygen saturation in blood etc.			

Course Content				
Unit	Description	Weightage* (%)		
1	 Temperature Measurements Introduction, Temperature scale, Measurements of Temperature, Non-Electrical Methods: Bimetallic Thermometer, Electrical Methods: Electrical Resistance Thermometer, Metallic Resistance Thermometers, Semiconductor Resistance Sensors(thermistor), Thermoelectric Sensors, Laws of thermoelectricity) Thermoelectric materials Radiation Methods (Pyrometry): Total radiation pyrometer, Selective radiation pyrometer. [D C Nakra and K K Chaudhary:12.1, 12.3, 12.4, 12.4.1, 12.5, 12.5.1, 12.5.2, 12.6, 12.6.1, 12.6.2] 	50%		
2	 Acoustic Measurements and Optical Fiber Sensors Acoustic Measurements: Characteristics of sound, sound pressure, power and intensity levels, sound pressure level, sound power level, sound intensity level, Microphones: Condenser or Capacitor type microphone, Piezo-electric crystal type microphone, Electrodynamic type microphone, Optical Fiber Sensors: Optical fibre sensors, Advantages of Optical Fiber Sensors, Types of Optical Fiber Sensors, Photometric, Physical and chemical sensors. [B C Nakra and K K Chaudhary: 14.1, 14.2, 14.2.1, 14.2.2, 14.2.3, 14.5, 14.5.1, 14.5.3, 14.5.4, R S Khandpur: 3.8, 3.8.1, 3.8.2] 	50%		

Teaching- Learning Methodology	Direct Teaching – Chalk & Duster technique Interrogative sessions Teaching using Audio-Visual aids ICT enabled teaching Problem solving, Seminar talks Learning through experiment and models Educational Tours	
--------------------------------------	---	--

Evaluation Pattern				
Sr. No.	Details of the Evaluation	Weightage		
Ι.	Internal Continuous Assessment in the form of Internal Written Test, Quizzes, Assignments, Active learning, Viva-voce, Seminars, Attendance (As per NEP Guideline)	50%		
2.	University Examination	50%		

Course	Course Outcomes: After the successful completion of the course, the students will be able to		
1.	Understand the different working methods for temperature measurements.		
2.	Understand the different characteristics of sound.		
3.	Acquire working knowledge and use of microphones for particular applications.		
4.	Understand how to use optical fibre as sensors for various physiological parameters like blood pressure, blood flow rate, oxygen saturation in blood and etc.		

Reference	Reference Books			
Sr. No.	References			
Ι.	Basic Electronics and Linear Circuits			
	N N Bhargava, D C Kulshreshtha and S C Gupta			
	TMH Publishing Company Limited, New Delhi,			
2.	Instrumentation Measurement and Analysis (3 rd Edition)			
	B C Nakra and K K Chaudhary, Tata McGraw Hill, New Delhi			
3.	Modern Electronic Instrumentation and Measurement Techniques			
	W D Cooper and A D Helfrick, PHI (Prentice Hall of India) learning Pvt. Ltd, New Delhi			
4.	A Basic Electronics (Solid State)			
	B L Theraja, S. Chand Pub. Ltd, New Delhi			

On-line Resources:

- 1. https://www.youtube.com/watch?v=cQdksgPgMgw
- 2. https://www.youtubc.com/watch?v=9EsOFiP1J2E
- 3. https://www.youtube.com/watch?v=t1sKM74gOJU
- 4. https://www.youtube.com/watch?v=pUqgbtKITVk
- 5. https://www.youtube.com/watch?v=dXb1DbSTKeg
- 6. https://www.pdhonline.com/courses/e166/e166content.pdf
- 7. https://web.mst.edu/~cottrell/me240/resources/temperature/temperature.pdf
- 8. https://www.rcet.org.in/uploads/academics/rohini 48741650119.pdf
- 9. https://mx.nthu.edu.tw/~yucsu/3271/p08.pdf
- 10. https://www.youtube.com/watch?v=SXAFkRKkeYg
- 11. https://www.youtube.com/watch?v=o-JDMOKgCaM
- 12. https://www.youtube.com/watch?v=cBVm0Q75C3U
- 13. https://www.youtube.com/watch?v=W5dUz5eEAOk
- 14. https://www.youtube.com/watch?v=m9IIkcBKQ5w
- https://www.youtube.com/watch?v=zxYeJW9v6OU&list=PLwymdQ84KIw5DwDzqO_4hWsB2Jc4_eBy

SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA-3.11) Syllabus with effect from the Academic Year 2024-2025

Bachelor of Science B.Sc. Physics Semester IV

Course Code		US04SEPHY02	Title of the Course	Experimental techniques in Physics
Total Credits of the Course		02	Hours per Week	04
-				•
Course 1. The		im of this course i	s to enable the students	to handle
Objectives: phys		cs instruments and basic experimental techniques.		
	2. To fa	miliarize and expe	rience students with va	rious electrical.
	electr	onic and optical to	ols.	,
	3. To ur	nderstand the basic	concept of physics inv	olving critical thinking.
	4. Gain	the knowledge of v	various phenomena usi	ng hands on

Description		
1. Calculation of periodic time at different lengths for simple pendulum		
2. Study of logic behavior of NAND and NOR gates		
3. Construction of EX-OR gate using basic gates and verify its truth table		
4. Resolving power of diffraction grating	100 %	
5. Study of Photo diode / optocoupler		
6. To study the characteristics of thermistor		
7. Verification of maximum power transfer theorem		
8. Study of Parallel LC circuit		
9. Linear harmonic oscillator (Kinetic energy and potential energy)		
10. Determination of unknown data using extrapolation method		

Note:

- [1] To provide flexibility, up to the maximum of 20% of total experiments can be replaced/added by college to this list prepared by the Board of Studies.
- [2] A minimum of 80% experiments must be performed in practical course.
- [3] To maintain uniformity in assessment of practical examination the below mentioned marks distribution pattern is followed:

Sr. No.	Work done	Weightage as per 50 Marks
1.	Writing Principle / Statement/ Formula with explanation of symbols	08 Marks
	and units	
2.	Diagram/Circuit Diagram / Expected Graph	08 Marks
3.	Setting up of the experiment + Tabular Columns + taking readings	14 Marks
4.	Calculations (explicitly shown) + Graph	10 Marks
5.	Accuracy of results with units	04 Marks
6.	Round the year Performance/ Records (to be valued at the time of	06 Marks
	practical Examination through oral viva)	
	Total for Practical	50 Marks
Note		

Wherever explicit setting up of experiments does not exist like in the case of spectral charts or pre–acquired data is involved, the marks for setting up of experiment may be provided for additional graphs and formulae.

Teaching Learning	Direct Teaching through Chalk-Walk and Talk
Methodology	ICT enabled teaching
	Question-Answer
	Class discussion led by teacher/students
	Case Studies
	Literature review
	Problem solving activities
	Debate
	Collaborative and Co-operative Learning
	Think Pair Share
	Jigsaw
	Inquiry Based Learning
	Panel Discussion
	Project Based Learning
	Flipped Classroom
	Blended Learning designs

Evaluation Pattern				
Sr. No.	Details of the Evaluation	Weightage		
1.	Internal Practical Examination (As per CBCS R.6.8.3)	50%		
2.	University Examination	50%		

Course Outcomes: On the successful completion of the course, the students will be able to

- 1. Apply the various procedures and techniques for the experiments.
- 2. Use different measuring devices and meters to record the data with precision.
- 3. Apply the mathematical concepts/equations to obtain quantitative results.
- 4. Develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the results.

Suggested References		
Sr. No.	References	
1.	B.Sc. Practical Physics C L Arora S. Chand & Co. Ltd., New Delhi (2018)	
2.	A text book in Electrical Technology; B L Theraja, S. Chand & Co. Ltd., New Delhi	
3.	Electronic Devices and Circuits; S. Salivahanan & N. S.Kumar, Tata Mcgraw Hill	
4.	Electrical Measurements And Measuring Instruments; R.K. Rajput, (S. Chand)	
5.	Basic Electronics; J.B. Gupta, S.K. Kataria & Sons 3 rd Edition (2015)	
6.	Practical Physics with Viva Voce; Dr. S. L. Gupta, Dr. V. Kumar, Pragati Prakashan, 3 rd Edition	

On-line resources to be used if available as reference material

On-line Resources:

https://www.electronics-tutorials.ws/

https://www.electronicshub.org/tutorials/

http://www.allaboutcircuits.com/

https://nptel.ac.in/courses/115/105/115105110

