(Bachelor of Science) (Undergraduate) (Industrial Chemistry Vocational) B. Sc. (UG) Semester – I (Effective from JUNE 2023)

Course Code (Major)	US1MAICV01	Title of the Course	Applied Chemistry
Total Credits of the Course	04 Hours per Week		04
Course Objectives:	To make students familiar with: 1.Applied Chemistry as a subject. 2.Basic concepts related to industrial, inorganicandanalytical chemistry.		

Cours	Course Content		
Unit	Description	Weightage*(%)	
1.	ATOMIC STRUCTURE Brief introduction to Bohr's model and its limitation, Concept of shells and subshells Shape of orbital, electron configuration of elements using Auf-bau principle, Hund's rule and Pauli's exclusion principle. MODERN PERIODIC TABLE Brief introduction to Mendeleev's periodic table and its drawback, Classification of element on the basis of their electronic configuration, periodic trend of ionization energy, electron affinity and electron negativity of elements in periodic table.	25%	
2.	HYBRIDIZATION Hybridization, Sigma and pi bonds, Hydrogen bond, Inductive effect, electronic effect, Resonance effect, Hyper-conjugation, Homolytic and heterolytic cleavage of a covalent bond, Structure and stability of free-radical, Carbocations and Carbanions. Types of organic reactions.	25%	
3.	SOLUTIONS Types of solutions, different methods of expressing strength of solutions, viz. molarity. molality, normality, formality, weight percent, preparation of standard solutions, Vapor pressure and Rault's law, ideal and non-ideal solution, positive and negative deviation of non-ideal solution from Rault's law.	25%	
4.	TITRIMETRIC METHODS OF CHEMICAL ANALYSIS General principle of titrimetry, Types of reactions in titrimetry, Standard solution, Basic requirements of titrimetry, Equivalence point and end point, Aqueous Acid Base Titrations, Concept of acid base titration.	25%	

Teaching- Learning Methodology	Conventional method (classroom blackboard teaching), ICT. Courses for B. Sc. Industrial Chemistry program are delivered through classroom, laboratory work in a challenging, engaging, and inclusive manner that accommodates a variety of learning styles and tools
	(PowerPoint presentations, audio visual resources, e-resources, seminars, workshops, models).

Evaluation	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Cour	Course Outcomes: Having completed this course, the learner will be able to		
1.	Acquire knowledge of different basic terms included in chemistry like atomic structure, periodic properties, chemical bonding, equilibrium and water hardness treatment etc.		
2.	2. Relate the formula of mass, moles, atoms, molecules & different way of expressing concentration of t solution & their preparation.		
3.	3. The students will learn the concepts of measurements and analytical aspects.		
4 Know about use of various theoretical analytical methods and their applications.			

Suggested	Suggested References:		
Sr. No.	References		
1.	Organic Chemistry , Paula YurkanisBruice		
2.	Industrial Instrumentation & Process Control by Kulkarni		
3.	David E Goldberg., Chemistry foundation. New york McGraw-Hill; 1991		
4.	Vogel'sText book of Quantitative Chemical Analysis – by G. H. Jeffory, J. Mendham, R.C.Denney		
5.	Analytical Chemistry-by G. D. Christian, Jhon Willey & Sons, 3 rd edition		
6.	Analytical Chemistry: Principles – by J. H. Kennedy, Saunders college publishers, 2 nd edition,1990		
7.	Introduction to Chemical Analysis – by R. D. Braun, Mc-Graw Hill Book Co. 2 nd edition 1995;		
8.	Arun Bahl, B. S. Bahl, G. D. Tuli, Essential of Physical chemistry. New Delhi: S. Chand publication; 2009.		
9.	Dr. A. S. Patel, Dr. K. M. Shah, Applied Science I: Chemistry, Ahmedabad, Atul Prakashan; 2000		
10	V.P. Mehta., Polytechnique chemistry, New Delhi, Jain Brothers; 2017		
11	General Chemistry, Darrell D. Ebbing & Steven D Gammon, Houghton Mifflin		

On-line resources to be used if available as reference material

On-line Resources: Google books, INFLIBNET, Google Web

(Bachelor of Science) (Undergraduate) (Industrial Chemistry Vocational) B. Sc. (UG) Semester – I (Effective from JUNE 2023)

Course Code (Major-Practical)	US1MAICV02	Title of the Course	Practical – Major
Total Credits of the Course	04	Hours per Week	08

Course Objectives:	To make students familiar with applied Chemistry as a subject and basic concepts related to analytical chemistry.

Course Content

Part: I – (Credit: 02; 04 Hours)

Calibration of Volumetric Glassware, Preparation & Standardization of Analytical Solutions (Modes of

Concentration).

Part: II – (Credit: 02; 04 Hours)

Organic qualitative analysis: (Mono functional), Volumetric Analysis – Acid–Base& Redox titrations.

Measurement of pH, Measurement of Specific Gravity., Measurement of Viscosity.

Teaching-	Courses for B. Sc. Industrial Chemistry Vocational program are delivered through classroom,
Learning	laboratory work in a challenging, engaging, and inclusive manner that accommodates a variety
Methodology	of learning styles and tools (PowerPoint presentations, audio visual resources, e-resources,
	seminars, workshops, models).

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	University Examination	100%

Course Outcomes: Having completed this course, the learner will be able to

Relate the formula of mass, moles, atoms, molecules & different way of expressing concentration of the solution & their preparation., The students will learn the concepts of measurements and analytical aspects., Know about use of various theoretical analytical methods and their applications.

Suggested References:

- 1. Brian S. Furniss (1989, 5thedition) *Vogel's Textbook of Practical Organic Chemistry*. Hoboken: John Willey & Sons (ISBN: 0-582-462363).
- 2. Hassner, A. (2012, 3rdedition) *Organic Syntheses Based on Name Reactions. Philadelphia*: Elsevier Publishing company (ISBN: 978-0-08-096630-4).
- 3. Jeffery, G. H.; Bassett, J.; Mendham, J.; Denny, R. C. (1989, 5th edition) *Vogel's Textbook of Quantitative Chemical Analysis*. Hoboken: John Willey & Sons (ISBN: 0-582-44693-7).

On-line resources to be used if available as reference material

On-line Resources: Google books, INFLIBNET, Google Web

(Bachelor of Science) (Undergraduate) (Industrial Chemistry Vocational) B. Sc. (UG) Semester – I (Effective from JUNE 2023)

Course Code	US1MIICV01	Title of the	Introduction to Industrial Chemistry
(Minor)		Course	introduction to industrial chemistry
Total Credits of	2	Hours per	2
the Course	2	Week	2
Course Objectives:	To make students familiar with: 1. Industrial Chemistry as a subject. 2.Basic concepts related to Industrial, inorganic andanalytical chemistry.		

Cours	Course Content		
Unit	Description	Weightage*(%)	
1.	ATOMIC STRUCTURE Brief introduction to Bohr's model and its limitation, Concept of shells and subshells Shape of orbital, electron configuration of elements using Auf-bau principle, Hund's rule and Pauli's exclusion principle. MODERN PERIODIC TABLE Brief introduction to Mendeleev's periodic table and its drawback, Classification of element on the basis of their electronic configuration, periodic trend of ionization energy, electron affinity and electron negativity of elements in periodic table.	50%	
2.	TITRIMETRIC METHODS OF CHEMICAL ANALYSIS General principle of titrimetry, Types of reactions in titrimetry, Standard solution, Basic requirements of titrimetry, Equivalence point and end point, Aqueous Acid Base Titrations, Concept of acid base titration.	50%	

	Teaching-	Conventional method (classroom blackboard teaching), ICT.
	Learning	Courses for B. Sc. Industrial Chemistry vocational program are delivered through classroom, laboratory
Methodology work in a challenging, engaging, and inclusive		work in a challenging, engaging, and inclusive manner that accommodates a variety of learning styles
	23	and tools (PowerPoint presentations, audio visual resources, e-resources, seminars, workshops, models).

Evaluation	Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage		
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%		
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%		

3.	University Examination	70%
----	------------------------	-----

Course Outcomes: Having completed this course, the learner will be able to			
1.	Acquire knowledge of different basic terms included in chemistry like atomic structure, periodic properties, chemical bonding, equilibrium and water hardness treatment etc.		
2.	Know about use of various theoretical analytical methods and their applications.		

Suggested References:			
Sr. No.	. References		
1.	David E Goldberg., Chemistry foundation. New york McGraw-Hill; 1991		
2.	Arun Bahl, B.S. Bahl, G.D. Tuli, Essential of Physical chemistry. New Delhi: S. Chand publication; 2009		
3.	Organic Chemistry, Paula Yurkanis Bruice		
4.	Vogel'sText book of Quantitative Chemical Analysis – by G. H. Jeffory, J. Mendham, R.C.Denney		
5.	Analytical Chemistry-by G. D. Christian, Jhon Willey & Sons, 3 rd edition		
6.	Analytical Chemistry: Principles – by J. H. Kennedy, Saunders college publishers, 2 nd edition,1990		
7.	Introduction to Chemical Analysis – by R. D. Braun, Mc-Graw Hill Book Co. 2 nd edition 1995;		
8.	Arun Bahl, B. S. Bahl, G. D. Tuli, Essential of Physical chemistry. New Delhi: S. Chand publication; 2009.		
9.	Dr. A. S. Patel, Dr. K. M. Shah, Applied Science I: Chemistry, Ahmedabad, Atul Prakashan; 2000		
10	V.P. Mehta., Polytechnique chemistry, New Delhi, Jain Brothers; 2017		
11	General Chemistry, Darrell D. Ebbing & Steven D Gammon, Houghton Mifflin		

On-line resources to be used if available as reference material
On-line Resources : Google books, INFLIBNET, Google Web

(Bachelor of Science) (Undergraduate) (Industrial Chemistry Vocational) B. Sc. (UG) Semester – I (Effective from JUNE 2023)

Course Code (Minor-Practical)	US1MIICV02	Title of the Course	Practical – Minor
Total Credits of the Course	02	Hours per Week	04

Course Objectives:	To make students familiar with applied Chemistry as a subject and Basic concepts related to analytical chemistry.

Course Content

Calibration of Volumetric Glassware., Preparation & Standardization of Analytical Solutions (Modes of Concentration), Organic qualitative analysis: (Mono functional), Volumetric Analysis – Acid – Base titrations., Measurement of pH, Measurement of Specific Gravity., Measurement of Viscosity.

Teaching-
Learning
Methodolog

Courses for B. Sc. Industrial Chemistry Vocational program are delivered through classroom, laboratory work in a challenging, engaging, and inclusive manner that accommodates a variety of learning styles and tools (PowerPoint presentations, audio visual resources, e-resources, seminars, workshops, models).

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	University Examination	100%

Course Outcomes: Having completed this course, the learner will be able to

Relate the formula of mass, moles, atoms, molecules & different way of expressing concentration of the solution & their preparation., The students will learn the concepts of measurements and analytical aspects., Know about use of various theoretical analytical methods and their applications.

Suggested References:

- 1. Brian S. Furniss (1989, 5thedition) *Vogel's Textbook of Practical Organic Chemistry*. Hoboken: John Willey & Sons (ISBN: 0-582-462363).
- 2. Hassner, A. (2012, 3rdedition) *Organic Syntheses Based on Name Reactions. Philadelphia*: Elsevier Publishing company (ISBN: 978-0-08-096630-4).
- 3. Jeffery, G. H.; Bassett, J.; Mendham, J.; Denny, R. C. (1989, 5th edition) *Vogel's Textbook of Quantitative Chemical Analysis*. Hoboken: John Willey & Sons (ISBN: 0-582-44693-7).

On-line resources to be used if available as reference material

On-line Resources: Google books, INFLIBNET, Google Web
